We simulated rapid flow in transient plane Couette flows of granular particles using the smoothed particle hydrodynamics (SPH) solutions of a set of continuum equations, This simulation was performed to test the via...We simulated rapid flow in transient plane Couette flows of granular particles using the smoothed particle hydrodynamics (SPH) solutions of a set of continuum equations, This simulation was performed to test the viability of SPH in solving the equations for the solid phase of the two-fluid model associated with fluidization. We found that SPH requires the handling of fewer particles in simulating the collective behavior of rapid granular flow, thereby bolstering expectations of solving the equations for the solid phase in the two-fluid modeling of fluidization. Further work is needed to investigate the effect of terms describing pressure and viscous stress of solids on stability in simulations.展开更多
We study a two-dimensional granular rapid flow with rough sidewalls stuck with the same size discs by molecular dynamics simulation. A transient state of the double-humped density profile in the flowing process has be...We study a two-dimensional granular rapid flow with rough sidewalls stuck with the same size discs by molecular dynamics simulation. A transient state of the double-humped density profile in the flowing process has been found, which appears and moves as travelling wave and is the same as the phenomena in the recent experiments [Acta Phys. Sin. 53 (2004) 3389 (in Chinese)]. Our simulation shows that the rough sidewalls play an important role in the converting momentum of boundary discs from the vertical direction to the horizontal one through particle collisions to form this profile and the good elasticity of discs ensures this effect. The appearance of the double-humped profile may be a precursor, which determines if the whole flow will be far repulsed from the boundary and become dilute eventually.展开更多
基金financially supported by the Ministry of Science and Technology of the People's Republic of China under Grant No.2012CB215003the National Natural Science Foundation of China under Grant Nos.21176240 and 21406081the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA07080100
文摘We simulated rapid flow in transient plane Couette flows of granular particles using the smoothed particle hydrodynamics (SPH) solutions of a set of continuum equations, This simulation was performed to test the viability of SPH in solving the equations for the solid phase of the two-fluid model associated with fluidization. We found that SPH requires the handling of fewer particles in simulating the collective behavior of rapid granular flow, thereby bolstering expectations of solving the equations for the solid phase in the two-fluid modeling of fluidization. Further work is needed to investigate the effect of terms describing pressure and viscous stress of solids on stability in simulations.
基金Supported by the National Hi-Tech Inertial Confinement Fusion Committee under Grant No 202AA84ts06, and the National Natural Science Foundation of China under Grant No 10274071.
文摘We study a two-dimensional granular rapid flow with rough sidewalls stuck with the same size discs by molecular dynamics simulation. A transient state of the double-humped density profile in the flowing process has been found, which appears and moves as travelling wave and is the same as the phenomena in the recent experiments [Acta Phys. Sin. 53 (2004) 3389 (in Chinese)]. Our simulation shows that the rough sidewalls play an important role in the converting momentum of boundary discs from the vertical direction to the horizontal one through particle collisions to form this profile and the good elasticity of discs ensures this effect. The appearance of the double-humped profile may be a precursor, which determines if the whole flow will be far repulsed from the boundary and become dilute eventually.