城市空间发展易受地形所限,削山造地能克服土地资源稀缺,成为解决城市空间拓展最为直接的途径。该方法利用遥感技术快速准确获取削山造地范围信息,对区域生态环境科学评估和新城发展规划具有十分重要的意义。本文基于GEE遥感云计算平台...城市空间发展易受地形所限,削山造地能克服土地资源稀缺,成为解决城市空间拓展最为直接的途径。该方法利用遥感技术快速准确获取削山造地范围信息,对区域生态环境科学评估和新城发展规划具有十分重要的意义。本文基于GEE遥感云计算平台,利用Sentinel-1合成孔径雷达(synthetic aperture Rader,SAR)数据,采用组合升、降轨影像,在噪声滤除和多时相影像合成的基础上,计算削山造地前后后向散射强度的差值,并采用百分位阈值法结合样本数据确定阈值,提取研究区2017—2022年削山造地开挖区时空分布;然后联合SAR和光学数据的光谱特征、纹理特征和地形特征,在特征优化的基础上结合随机森林算法获取了2017—2022年逐年削山造地范围时空分布。研究结果表明:①提取的开挖区范围总体分类精度和Kappa系数分别达85%和0.83。②研究期间,发现2019年前开挖区主要集中在九州开发区、碧桂园和保利领秀山,2020年以后新增加了刘家沟、水源站等开挖区,开挖范围和强度逐渐增大。③2018年前造地规模较小,面积为2.655 km 2;2019年以后造地规模逐年增大,特别是2021年,其造地面积达12.607 km 2,占监测期间总造地面积的34.56%,2022年在原造地基础上开挖,因坡度和开挖量逐渐增大,造地面积仅2.686 km 2。本文构建的削山造地开挖区监测和造地范围提取方法可有效获取削山和造地范围快速监测与提取。展开更多
在地球观测领域,航空光学影像和机载激光探测与测距(light detection and ranging,LiDAR)点云是获取地表空间信息的主要数据源。精确的几何配准是融合这两类数据的前提。本文提出了一种像方距离场与物方平面约束联合的航空影像与激光点...在地球观测领域,航空光学影像和机载激光探测与测距(light detection and ranging,LiDAR)点云是获取地表空间信息的主要数据源。精确的几何配准是融合这两类数据的前提。本文提出了一种像方距离场与物方平面约束联合的航空影像与激光点云精确配准方法。该方法分为基于线元距离场的单像配准和线面约束结合的区域网平差两个阶段。在基于线元距离场的单像配准中,首先从航空影像和机载LiDAR点云中分别提取线元素,然后基于航空影像线元素构建距离场,并将点云线基元投影至像平面。通过渐进式稳健求解最小化点云投影线基元在距离场中的全局代价,从而实现单张影像与LiDAR点云的配准。在线面约束结合的区域网平差阶段,选择部分线特征分布较为密集的影像作为关键景影像,并对关键景影像中的同名线元素进行匹配,以提取控制点作为水平及高程约束。此外,还利用影像连接点到最近水平面的距离作为高程约束,通过区域网平差实现多视航空影像与机载点云的配准。试验结果表明,该方法能在初始值较差的情况下实现稳健配准,其配准精度优于点云间距,配准精度与配准效率都显著优于迭代最近点(iterative closest point,ICP)配准算法和通过跨模态匹配进行配准的策略。展开更多
文摘城市空间发展易受地形所限,削山造地能克服土地资源稀缺,成为解决城市空间拓展最为直接的途径。该方法利用遥感技术快速准确获取削山造地范围信息,对区域生态环境科学评估和新城发展规划具有十分重要的意义。本文基于GEE遥感云计算平台,利用Sentinel-1合成孔径雷达(synthetic aperture Rader,SAR)数据,采用组合升、降轨影像,在噪声滤除和多时相影像合成的基础上,计算削山造地前后后向散射强度的差值,并采用百分位阈值法结合样本数据确定阈值,提取研究区2017—2022年削山造地开挖区时空分布;然后联合SAR和光学数据的光谱特征、纹理特征和地形特征,在特征优化的基础上结合随机森林算法获取了2017—2022年逐年削山造地范围时空分布。研究结果表明:①提取的开挖区范围总体分类精度和Kappa系数分别达85%和0.83。②研究期间,发现2019年前开挖区主要集中在九州开发区、碧桂园和保利领秀山,2020年以后新增加了刘家沟、水源站等开挖区,开挖范围和强度逐渐增大。③2018年前造地规模较小,面积为2.655 km 2;2019年以后造地规模逐年增大,特别是2021年,其造地面积达12.607 km 2,占监测期间总造地面积的34.56%,2022年在原造地基础上开挖,因坡度和开挖量逐渐增大,造地面积仅2.686 km 2。本文构建的削山造地开挖区监测和造地范围提取方法可有效获取削山和造地范围快速监测与提取。