Alzheimer's disease (AD), a fatal, progressive, neurodegener- ative disorder, is the most common cause of old-age demen- tia, accounting for 50-75% of dementia patients. Early stages of AD are marked by vocabulary ...Alzheimer's disease (AD), a fatal, progressive, neurodegener- ative disorder, is the most common cause of old-age demen- tia, accounting for 50-75% of dementia patients. Early stages of AD are marked by vocabulary shrinkage, spatial disori- entation, depression, apraxia, and deterioration of recent forms of declarative memory. In course of time, the patients require close supervision due to the loss of cognitive and functional abilities, and at the terminal stages of the disease, all forms of memory are severely impaired with the patients needing nursing home care (World Alzheimer Report, 2013).展开更多
Compensatory/adaptive mechanisms in the brain are hy- pothesized to be involved in its protection from the Alz- heimer's disease (AD) progression. These mechanisms are activated by malfunctioning of various brain s...Compensatory/adaptive mechanisms in the brain are hy- pothesized to be involved in its protection from the Alz- heimer's disease (AD) progression. These mechanisms are activated by malfunctioning of various brain systems: anti- oxidant, neurotrophic, neurotransmitter, immune, and oth- ers. Detailed analysis of compensatory^adaptive capabilities of these systems might be a start point for further discovery and development of perspective approaches for early diag- nostics and treatment of AD and associated neurodegenera- tive disorders.展开更多
Frontotemporal lobar degeneration describes a group of progressive brain disorders that primarily are associated with atrophy of the prefrontal and anterior temporal lobes.Frontotemporal lobar degeneration is consider...Frontotemporal lobar degeneration describes a group of progressive brain disorders that primarily are associated with atrophy of the prefrontal and anterior temporal lobes.Frontotemporal lobar degeneration is considered to be equivalent to frontotemporal dementia.Frontotemporal dementia is characterized by progressive impairments in behavior,executive function,and language.There are two main clinical subtypes:behavioral-variant frontotemporal dementia and primary progressive aphasia.The early diagnosis of frontotemporal dementia is critical for developing management strategies and interventions for these patients.Without validated biomarkers,the clinical diagnosis depends on recognizing all the core or necessary neuropsychiatric features,but misdiagnosis often occurs due to overlap with a range of neurologic and psychiatric disorders.In the studies reviewed a very large number of microRNAs were found to be dysregulated but with limited overlap between individual studies.Measurement of specific miRNAs singly or in combination,or as miRNA pairs(as a ratio)in blood plasma,serum,or cerebrospinal fluid enabled frontotemporal dementia to be discriminated from healthy controls,Alzheimer’s disease,and amyotrophic lateral sclerosis.Furthermore,upregulation of miR-223-3p and downregulation of miR-15a-5p,which occurred both in blood serum and cerebrospinal fluid,distinguished behavioral-variant frontotemporal dementia from healthy controls.Downregulation of miR-132-3p in frontal and temporal cortical tissue distinguished frontotemporal lobar degeneration and frontotemporal dementia,respectively,from healthy controls.Possible strong miRNA biofluid biomarker contenders for behavioral-variant frontotemporal dementia are miR-223-3p,miR-15a-5p,miR-22-3p in blood serum and cerebrospinal fluid,and miR-124 in cerebrospinal fluid.No miRNAs were identified able to distinguish between behavioral-variant frontotemporal dementia and primary progressive aphasia subtypes.Further studies are warranted on investigating miRNA expression in biofluids and frontal/temporal cortical tissue to validate and extend these findings.展开更多
Background:Disease modifying therapies(DMTs)are urgently needed for neurodegenerative diseases(NDD)such as Alzheimer’s disease(AD)and many other disorders characterized by protein aggregation and neurodegeneration.De...Background:Disease modifying therapies(DMTs)are urgently needed for neurodegenerative diseases(NDD)such as Alzheimer’s disease(AD)and many other disorders characterized by protein aggregation and neurodegeneration.Despite advances in understanding the neurobiology of NDD,there are no approved DMTs.Discussion:Defining disease-modification is critical to drug-development programs.A DMT is an intervention that produces an enduring change in the trajectory of clinical decline of an NDD by impacting the disease processes leading to nerve cell death.A DMT is neuroprotective,and neuroprotection will result in disease modification.Disease modification can be demonstrated in clinical trials by a drug-placebo difference in clinical outcomes supported by a drug-placebo difference on biomarkers reflective of the fundamental pathophysiology of the NDD.Alternatively,disease modification can be supported by findings on a staggered start or delayed withdrawal clinical trial design.Collecting multiple biomarkers is necessary to support a comprehensive view of disease modification.Conclusion:Disease modification is established by demonstrating an enduring change in the clinical trajectory of an NDD based on intervention in the fundamental pathophysiology of the disease leading to nerve cell death.Supporting data are collected in clinical trials.Effectively defining a DMT will assist in NDD drug development programs.展开更多
Background:The combinatorial efect of multiple genetic factors calculated as a polygenic risk score(PRS)has been studied to predict disease progression to Alzheimer’s disease(AD)from mild cognitive impairment(MCI).Pr...Background:The combinatorial efect of multiple genetic factors calculated as a polygenic risk score(PRS)has been studied to predict disease progression to Alzheimer’s disease(AD)from mild cognitive impairment(MCI).Previous studies have investigated the performance of PRS in the prediction of disease progression to AD by including and excluding single nucleotide polymorphisms within the region surrounding the APOE gene.These studies may have missed the APOE genotype-specifc predictability of PRS for disease progression to AD.Methods:We analyzed 732 MCI from the Alzheimer’s Disease Neuroimaging Initiative cohort,including those who progressed to AD within 5 years post-baseline(n=270)and remained stable as MCI(n=462).The predictability of PRS including and excluding the APOE region(PRS_(+APOE) and PRS_(−APOE))on the conversion to AD and its interaction with the APOEε4 carrier status were assessed using Cox regression analyses.Results:PRS_(+APOE)(hazard ratio[HR]1.468,95%CI 1.335-1.615)and PRS_(−APOE)(HR 1.293,95%CI 1.157-1.445)were both associated with a signifcantly increased risk of MCI progression to dementia.The interaction between PRS_(+APOE) and APOEε4 carrier status was signifcant with a P-value of 0.0378.The association of PRSs with the progression risk was stronger in APOEε4 non-carriers(PRS_(+APOE):HR 1.710,95%CI 1.244-2.351;PRS_(−APOE):HR 1.429,95%CI 1.182-1.728)than in APOEε4 carriers(PRS_(+APOE):HR 1.167,95%CI 1.005-1.355;PRS_(−APOE):HR 1.172,95%CI 1.020-1.346).Conclusions:PRS could predict the conversion of MCI to dementia with a stronger association in APOEε4 noncarriers than APOEε4 carriers.This indicates PRS as a potential genetic predictor particularly for MCI with no APOEε4 alleles.展开更多
The fundamental role that alpha-synuclein(aSyn)plays in the pathogenesis of neurodegenerative synucleinopathies,including Parkinson’s disease,dementia with Lewy bodies,and multiple system atrophy,is a well-accepted f...The fundamental role that alpha-synuclein(aSyn)plays in the pathogenesis of neurodegenerative synucleinopathies,including Parkinson’s disease,dementia with Lewy bodies,and multiple system atrophy,is a well-accepted fact.A wealth of experimental evidence has linked this relatively small but ubiquitously expressed protein to a plethora of cytopathologic mechanisms and suggests that aSyn may be capable of seeding the progressive spread of synucleinopathy throughout the brain.Beyond the synucleinopathies,the abnormal deposition of aSyn is frequently seen in a variety of other neurodegenerative proteinopathies including Alzheimer’s disease.In spite of the fact that the frequency of concomitant aSyn pathology in these disorders is such that it can be considered the rule rather than the exception,the potential role that aSyn may have in these disorders has received relatively little attention.In this article we postulate that aSyn may in fact be a key protein in driving the pathogenic processes in neurodegenerative comorbidities.In addition to reviewing the frequency of concomitant deposition of aSyn in the neurodegenerative proteinopathies,we also consider our current understanding of the interaction of aSyn with other neurodegenerative disease-associated proteins,including tau,TDP-43,amyloid-βand prion protein,in the context of neuropathologic studies describing the anatomical sites of potential concomitant pathology.We conclude that a growing body of evidence,encompassing neuropathology studies in human brain,animal models of concomitant proteinopathies and studies employing sophisticated methods of probing protein-protein interaction,cumulatively suggest that aSyn is well positioned to exert a strong influence on the pathogenesis of the neurodegenerative comorbidities.We hope to stimulate research in this emerging field and consider that future studies exploring the contribution of aSyn to the pathogenic processes in neurodegenerative comorbidities may provide critical information pertaining to diagnosis and the development of vital disease modifying treatments for these devastating diseases.展开更多
基金in part supported by the German Ministry for Education and Research (BMBF) special network program KMU-Innovativ-2
文摘Alzheimer's disease (AD), a fatal, progressive, neurodegener- ative disorder, is the most common cause of old-age demen- tia, accounting for 50-75% of dementia patients. Early stages of AD are marked by vocabulary shrinkage, spatial disori- entation, depression, apraxia, and deterioration of recent forms of declarative memory. In course of time, the patients require close supervision due to the loss of cognitive and functional abilities, and at the terminal stages of the disease, all forms of memory are severely impaired with the patients needing nursing home care (World Alzheimer Report, 2013).
基金supported by grant KOMFI 13-04-40106-H (Russia):"Structure-functional studies of р-75 receptor–molecular target for neurodegenerative diseases immunotherapy"Grant RFBR 13-04-00633A (Russia):"Study of role of receptor for advanced glycation end products (RAGE) in mechanisms of beta-amyloid neurotoxicity in model of sporadic Alzheimer’s disease"
文摘Compensatory/adaptive mechanisms in the brain are hy- pothesized to be involved in its protection from the Alz- heimer's disease (AD) progression. These mechanisms are activated by malfunctioning of various brain systems: anti- oxidant, neurotrophic, neurotransmitter, immune, and oth- ers. Detailed analysis of compensatory^adaptive capabilities of these systems might be a start point for further discovery and development of perspective approaches for early diag- nostics and treatment of AD and associated neurodegenera- tive disorders.
文摘Frontotemporal lobar degeneration describes a group of progressive brain disorders that primarily are associated with atrophy of the prefrontal and anterior temporal lobes.Frontotemporal lobar degeneration is considered to be equivalent to frontotemporal dementia.Frontotemporal dementia is characterized by progressive impairments in behavior,executive function,and language.There are two main clinical subtypes:behavioral-variant frontotemporal dementia and primary progressive aphasia.The early diagnosis of frontotemporal dementia is critical for developing management strategies and interventions for these patients.Without validated biomarkers,the clinical diagnosis depends on recognizing all the core or necessary neuropsychiatric features,but misdiagnosis often occurs due to overlap with a range of neurologic and psychiatric disorders.In the studies reviewed a very large number of microRNAs were found to be dysregulated but with limited overlap between individual studies.Measurement of specific miRNAs singly or in combination,or as miRNA pairs(as a ratio)in blood plasma,serum,or cerebrospinal fluid enabled frontotemporal dementia to be discriminated from healthy controls,Alzheimer’s disease,and amyotrophic lateral sclerosis.Furthermore,upregulation of miR-223-3p and downregulation of miR-15a-5p,which occurred both in blood serum and cerebrospinal fluid,distinguished behavioral-variant frontotemporal dementia from healthy controls.Downregulation of miR-132-3p in frontal and temporal cortical tissue distinguished frontotemporal lobar degeneration and frontotemporal dementia,respectively,from healthy controls.Possible strong miRNA biofluid biomarker contenders for behavioral-variant frontotemporal dementia are miR-223-3p,miR-15a-5p,miR-22-3p in blood serum and cerebrospinal fluid,and miR-124 in cerebrospinal fluid.No miRNAs were identified able to distinguish between behavioral-variant frontotemporal dementia and primary progressive aphasia subtypes.Further studies are warranted on investigating miRNA expression in biofluids and frontal/temporal cortical tissue to validate and extend these findings.
基金JC acknowledges funding from the National Institute of General Medical Sciences(Grant:P20GM109025)and support from Keep Memory Alive.
文摘Background:Disease modifying therapies(DMTs)are urgently needed for neurodegenerative diseases(NDD)such as Alzheimer’s disease(AD)and many other disorders characterized by protein aggregation and neurodegeneration.Despite advances in understanding the neurobiology of NDD,there are no approved DMTs.Discussion:Defining disease-modification is critical to drug-development programs.A DMT is an intervention that produces an enduring change in the trajectory of clinical decline of an NDD by impacting the disease processes leading to nerve cell death.A DMT is neuroprotective,and neuroprotection will result in disease modification.Disease modification can be demonstrated in clinical trials by a drug-placebo difference in clinical outcomes supported by a drug-placebo difference on biomarkers reflective of the fundamental pathophysiology of the NDD.Alternatively,disease modification can be supported by findings on a staggered start or delayed withdrawal clinical trial design.Collecting multiple biomarkers is necessary to support a comprehensive view of disease modification.Conclusion:Disease modification is established by demonstrating an enduring change in the clinical trajectory of an NDD based on intervention in the fundamental pathophysiology of the disease leading to nerve cell death.Supporting data are collected in clinical trials.Effectively defining a DMT will assist in NDD drug development programs.
基金Alzheimer’s Disease Neuroimaging Initiative(National Institutes of Health Grant U01 AG024904)and DOD ADNI(Department of Defense award number W81XWH-12–2-0012).ADNI is funded by the National Institute on Agingthe National Institute of Biomedical Imaging and Bioengineering,and through generous contributions from the following:AbbVie,Alzheimer’s Association+28 种基金Alzheimer’s Drug Discovery FoundationAraclon BiotechBioClinica,Inc.BiogenBristol-Myers Squibb CompanyCereSpir,Inc.CogstateEisai Inc.Elan Pharmaceuticals,Inc.Eli Lilly and CompanyEuroImmunF.Hofmann-La Roche Ltd and its afliated company Genentech,Inc.FujirebioGE HealthcareIXICO Ltd.Janssen Alzheimer Immunotherapy Research&Development,LLC.Johnson&Johnson Pharmaceutical Research&Development LLC.LumosityLundbeckMerck&Co.,Inc.Meso Scale Diagnostics,LLC.NeuroRx ResearchNeurotrack TechnologiesNovartis Pharmaceuticals CorporationPfzer Inc.Piramal ImagingServierTakeda Pharmaceutical Companyand Transition Therapeutics.The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada.Private sector contributions are facilitated by the Foundation for the National Institutes of Health(www.fnih.org).The grantee organization is the Northern California Institute for Research and Education,and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California.ADNI data are dis‑seminated by the Laboratory for Neuro Imaging at the University of Southern California.
文摘Background:The combinatorial efect of multiple genetic factors calculated as a polygenic risk score(PRS)has been studied to predict disease progression to Alzheimer’s disease(AD)from mild cognitive impairment(MCI).Previous studies have investigated the performance of PRS in the prediction of disease progression to AD by including and excluding single nucleotide polymorphisms within the region surrounding the APOE gene.These studies may have missed the APOE genotype-specifc predictability of PRS for disease progression to AD.Methods:We analyzed 732 MCI from the Alzheimer’s Disease Neuroimaging Initiative cohort,including those who progressed to AD within 5 years post-baseline(n=270)and remained stable as MCI(n=462).The predictability of PRS including and excluding the APOE region(PRS_(+APOE) and PRS_(−APOE))on the conversion to AD and its interaction with the APOEε4 carrier status were assessed using Cox regression analyses.Results:PRS_(+APOE)(hazard ratio[HR]1.468,95%CI 1.335-1.615)and PRS_(−APOE)(HR 1.293,95%CI 1.157-1.445)were both associated with a signifcantly increased risk of MCI progression to dementia.The interaction between PRS_(+APOE) and APOEε4 carrier status was signifcant with a P-value of 0.0378.The association of PRSs with the progression risk was stronger in APOEε4 non-carriers(PRS_(+APOE):HR 1.710,95%CI 1.244-2.351;PRS_(−APOE):HR 1.429,95%CI 1.182-1.728)than in APOEε4 carriers(PRS_(+APOE):HR 1.167,95%CI 1.005-1.355;PRS_(−APOE):HR 1.172,95%CI 1.020-1.346).Conclusions:PRS could predict the conversion of MCI to dementia with a stronger association in APOEε4 noncarriers than APOEε4 carriers.This indicates PRS as a potential genetic predictor particularly for MCI with no APOEε4 alleles.
文摘The fundamental role that alpha-synuclein(aSyn)plays in the pathogenesis of neurodegenerative synucleinopathies,including Parkinson’s disease,dementia with Lewy bodies,and multiple system atrophy,is a well-accepted fact.A wealth of experimental evidence has linked this relatively small but ubiquitously expressed protein to a plethora of cytopathologic mechanisms and suggests that aSyn may be capable of seeding the progressive spread of synucleinopathy throughout the brain.Beyond the synucleinopathies,the abnormal deposition of aSyn is frequently seen in a variety of other neurodegenerative proteinopathies including Alzheimer’s disease.In spite of the fact that the frequency of concomitant aSyn pathology in these disorders is such that it can be considered the rule rather than the exception,the potential role that aSyn may have in these disorders has received relatively little attention.In this article we postulate that aSyn may in fact be a key protein in driving the pathogenic processes in neurodegenerative comorbidities.In addition to reviewing the frequency of concomitant deposition of aSyn in the neurodegenerative proteinopathies,we also consider our current understanding of the interaction of aSyn with other neurodegenerative disease-associated proteins,including tau,TDP-43,amyloid-βand prion protein,in the context of neuropathologic studies describing the anatomical sites of potential concomitant pathology.We conclude that a growing body of evidence,encompassing neuropathology studies in human brain,animal models of concomitant proteinopathies and studies employing sophisticated methods of probing protein-protein interaction,cumulatively suggest that aSyn is well positioned to exert a strong influence on the pathogenesis of the neurodegenerative comorbidities.We hope to stimulate research in this emerging field and consider that future studies exploring the contribution of aSyn to the pathogenic processes in neurodegenerative comorbidities may provide critical information pertaining to diagnosis and the development of vital disease modifying treatments for these devastating diseases.