The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr ...The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr in medium manganese steel can improved the ordering of C–Mn atomic clusters, so as to improve the steel's thermal conductivity. However, Cr will lead to precipitation of a great deal of carbides in medium manganese steel when its content is greater than 4wt%. These carbides would aggregate around the grain boundary, and as a result, the thermal conductivity is decreased. By the addition of Mo whose content is about 2wt%, spherical carbides will be formed, thus improving the thermal conductivity of the medium manganese steel. The interaction between rare earth elements and alloying elements will raise both the thermal conductivity and the wear-resisting property of medium manganese steel.展开更多
The behavior of rare earth element Ce in 2090 Al Li alloys was studied by the method of low frequency internal friction.The results showed that rare earth element Ce can increase the activation energy of grain bounda...The behavior of rare earth element Ce in 2090 Al Li alloys was studied by the method of low frequency internal friction.The results showed that rare earth element Ce can increase the activation energy of grain boundary and improve the grain boundary strength of alloys.Rare earth element Ce can decrease the tendency of softening of elastic modulus of 2090 Al Li alloys after heat cycle and keep high elastic modulus of initial state.展开更多
The strong effect of rare earth(RE)on medium-temperature internal friction(IF)of commercially pure iron is closely related to the heat treatment.The RE added into iron has an alloying effect.The Snoek-Ke-Kster(briefly...The strong effect of rare earth(RE)on medium-temperature internal friction(IF)of commercially pure iron is closely related to the heat treatment.The RE added into iron has an alloying effect.The Snoek-Ke-Kster(briefly SKK)peak lower as the aging temperature in- creases from 150℃ to 450℃,but it still exists even aged at 600℃.However,the SKK peak temperature T_p does not simply falls as the ascending of aging temperature,it rises again at 600℃ aging.展开更多
The effect of rare earth(RE) on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel was investigated at 650 °C under different stress levels. It was found that RE could increase the time to ...The effect of rare earth(RE) on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel was investigated at 650 °C under different stress levels. It was found that RE could increase the time to creep rupture, especially at long-term creep duration. The logarithm of the time to creep rupture(lgtr) was a linear function of the applied stress(σ). RE addition was favorable to generating a high fraction of low-coincidence site lattice(CSL) boundaries which was a possible cause for improving the creep rupture resistance. The fracture surface of RE-added steel exhibited less intergranular cracks suggesting the alteration on the nature of grain boundaries due to the presence of RE. RE addition changed the morphology of the intergranular chromium carbides from continuous network shape to fragmentary distribution which was another cause for longer creep duration. These results strongly suggested that the effect of RE alloying played a crucial role in improving the creep rupture resistance.展开更多
The profile of both hardness and microstructure of continuous casting blanks and rails of PD3 heavy rail steel and PD3RE steel containing small amount of rare earth (RE) added from tundish were studied. It is found ...The profile of both hardness and microstructure of continuous casting blanks and rails of PD3 heavy rail steel and PD3RE steel containing small amount of rare earth (RE) added from tundish were studied. It is found that the addition of RE makes the fluctuation of the hardness value decrease, and inhibits effectively and/or even removes lower hardness value(zone) in the centric area of the blank with a cross section of 280 mm × 380 mm, and that the surface layer in the rail head of PD3RE steel is obviously hardened and the reason causing this hardening is due to the thinning of the pearlite structure. The metallographic observation shows that there exists a Fe-P(C) eutectic structure in the blank center of the PD3 steel containing only 0. 016% P, while the addition of RE can fully inhibit this structure.展开更多
The influence of rare earth on the friction and wear characteristics of magnesium alloy AZ91 and AM60 were studied. The results show that the wear resistance properties of rare earth magnesium alloys are better than t...The influence of rare earth on the friction and wear characteristics of magnesium alloy AZ91 and AM60 were studied. The results show that the wear resistance properties of rare earth magnesium alloys are better than those of matrix alloy under the testing conditions. The anti wear behaviour of AZ91 alloy is much better than that of AM60 alloy. In dry sliding process,magnesium alloys undergo a transition from mild wear to severe wear. The addition of rare earths refine the structure of alloys, improve the comprehensive behaviors of magnesium alloys, increase the stability of oxidation films on worn surfaces, enhance the loading ability of rare earth magnesium alloys, and delay the transition from mild wear to severe wear effectively.展开更多
To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the ...To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.展开更多
The effects of the addition of rare earth (RE) elements on the void band in the diffusion layer, and the re sistances to both oxidation and spalling of aluminized steel were investigated through high temperature oxi...The effects of the addition of rare earth (RE) elements on the void band in the diffusion layer, and the re sistances to both oxidation and spalling of aluminized steel were investigated through high temperature oxidation and spalling tests. The results showed that RE had significant effects on the void band in the diffusion layer and the properties of aluminized steel. After diffusion treatment, a considerable number of the voids between the middle layer and transitional layer of pure aluminized coating, aggregated into wavy-line-shaped void bands parallel to the outer surface. For the RE added aluminized coating, only a few voids aggregated into intermittent block shapes. During high temperature oxidation at 800 ℃ for 200 h, the wavy void band of pure aluminized coating aggregated further into a linear crack parallel to the outer surface, and the internal oxidation occurred within them; the open cracks perpendicular to the surface penetrated through the diffusion layer. For the RE added aluminized coating, only a few voids aggregated into intermittent meniscus shapes. During cyclic spalling tests, the peeling, spallation, and pulver ulent cracking occurred along the void band in the diffusion layer of pure aluminized coating, but only a little spallation occurred in the diffusion layer of the RE-added aluminized coating, in which cracks perpendicular to the surface were much smaller than those of pure aluminized coating and did not penetrate through the diffusion layer. It is evident that RE addition can restrain the formation and aggregation of voids and subsequently improve the resistances to oxidation and spalling. The mechanism of the RE effect on the void band in the diffusion layer is also discussed.展开更多
With the improvement of the clean steel by degrees, the functions of rare earth metals in steel are more focused on modification of inclusions and micro alloying.The new study concerning the application of RE metals i...With the improvement of the clean steel by degrees, the functions of rare earth metals in steel are more focused on modification of inclusions and micro alloying.The new study concerning the application of RE metals in clean steels were investigated by ICP, metallographic examination, SEM, EDS, EPMA, TEM and IMMA.The mechanism of corrosion resistance in the weather resistance steel was clarified.The mechanism of abrasion resistance and the life of fatigue enhanced in the RE - heavy rails steel were discussed.Progress in study of application of rare earth metals in steels (including weather resistance steel, low alloy steel, and heavy rails steel) was covered in this paper.展开更多
The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloy AZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are bette...The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloy AZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are better than those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear to severe wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of the magnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.展开更多
The internal frictions of the specimens in the waist centre of the commercial BNb and BNbRE rails, which were left in air for two years, were measured. It is found that there is an obvious Snoek-Kê-Koester (SKK...The internal frictions of the specimens in the waist centre of the commercial BNb and BNbRE rails, which were left in air for two years, were measured. It is found that there is an obvious Snoek-Kê-Koester (SKK) peak in both steels, and still exists a measurable deformation-enhanced Shock peak(DESP) in the specimens of the BNbRE steel. The internal frictions in the deformed specimens of the both steel rails were also measured. Unlike the case of the tread specimens showing a decrease of SKK damping due to deformation, the SKK damping of the rail waist specimens increases after deformation; and the specimens containing rare earth(RE) show more noticeable damping increase than those without RE. The results of the internal friction measured during ascending and descending temperature under 700℃ show that there is a high temperature damping which can be completely disappeared during descending temperature for both steels.展开更多
The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austeni...The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.展开更多
In order to improve the performance of the metal rollers, Mo+Y2O3 alloy powders were used to coat uniformly on the surface of 40Cr steel roller substrates for the laser surface alloying treatment by a CO2 laser, The ...In order to improve the performance of the metal rollers, Mo+Y2O3 alloy powders were used to coat uniformly on the surface of 40Cr steel roller substrates for the laser surface alloying treatment by a CO2 laser, The results showed that many good consequences were ob- tained after adding the rare earth oxide Y2O3. The crystal grains of the alloy layer were significantly refined. The boundary of crystal grains was strengthened. The unifomaity and density of the microstructure were increased. The hardness and wearing resistance of the alloy layer were considerably improved. The valence electron structure analysis of the alloy layer was made by the empirical electron theory of solids and molecules (EET). The calculated results demonstrated that Y should be mixed in the first stage and Fe should be in the eighteenth hybrid bands. The analyzed outcomes illustrated that the electron theory of the solid solution shows the strengthening effect on the alloying layer, which has enhanced bond and confirrned the experimental results.展开更多
Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying...Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying the tension to compression asymmetry problem and strain hardening anomalies in a Magnesium–Silver–Rare Earth alloy by engineering different levels of microstructural conditions via friction stir processing and post process annealing.The existence and extent of yield asymmetry ratio in the range of microstructural conditions was experimentally obtained through quasistatic tensile and compression tests.The yield asymmetry problem was profoundly present in specimens of coarse grained microstructures when compared to their fine grained and ultra fine grained counterparts.The impact of the microstructure and associated mechanisms of plasticity on the macroscopic strain hardening behavior was established by Kock–Mecking’s analysis.Crystal plasticity simulations using Viscoplastic Self Consistency approach revealed the consequential role of extension twinning mechanism for the existence of yield asymmetry and anomalies in strain hardening behavior.This was especially dominant with coarsening of grain size.Electron Microscopy and characterization were conducted thoroughly in partially deformed specimens to confirm the predictions of the above simulations.The role of crystallographic texture for inducing the polarity to Tension–Compression yield asymmetry was corroborated.A critical grain size in Magnesium–Silver–Rare earth alloy was hereby established which could nullify influences of extension twinning in yield asymmetry ratio.展开更多
The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ...The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ξ = Ktn, the reaction index n = 0.50 approximately 0.75. The higher the oxidation temperature is, the larger the n value is. It means that the internal oxidation of wire sampls at high temperature deviates from parabola rule observed on plate sample. The activation energies of the studied alloys range over 120 approximately 160 kJ/mol. The internal oxidation process is controlled by the bulk diffusion of oxygen.展开更多
The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlB...The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlBi alloy was measured, and the influence of loading and rotation speed on friction and wear properties of CuAlBi alloy was also discussed. The results show that the friction coefficient increase then decrease with increase of connecting loading as well as decreases with increase of friction speed, and the wear loss mass increases with increase of connecting loading and friction speed. As a result, the wear failure form of CuAlBi alloy is mainly ploughing.展开更多
The friction and wear behaviors of the Cu-Cr alloy sliding against GCr15 steel at different loads and rotate speed conditions were evaluated, and the worn surface morphologies were observed on a scanning electron micr...The friction and wear behaviors of the Cu-Cr alloy sliding against GCr15 steel at different loads and rotate speed conditions were evaluated, and the worn surface morphologies were observed on a scanning electron microscope. Results show that as loads and rotate speed increase, the wear loss weight increases, by comparison, the biggest friction coefficient of Cu-Cr alloy was obtained at load 100 N and rotate speed at 100 r·min-1 friction condition. Moreover, the dominant wear forms was plough wear.展开更多
Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as ...Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray diffraction, Vickers microhardness tester, pin-on-disc tribometer and potentiodynamic polarization tests. The results show that the thickness of plasma RE nitrocarburized layer is much thicker than that formed by nitrocarburizing without RE addition. The incorporation of RE does not change the kind of the phases and the nitrocarburized layer consists mainly of nitrogen and carbon expanded martensite (aN), γ-Fe4N and a-Fe with a trace of CrN phases. The surface microhardness of plasma nitrocarburized layer can be increased by 100 HV after RE addition. Wear resistance of the specimen can be apparently improved by low temperature plasma nitrocarburizing with and without RE addition and without sacrificing its corrosion resistance. Wear reduction effect of low temperature plasma nitrocarburizing with RE addition is better than that of the conventional one.展开更多
文摘The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr in medium manganese steel can improved the ordering of C–Mn atomic clusters, so as to improve the steel's thermal conductivity. However, Cr will lead to precipitation of a great deal of carbides in medium manganese steel when its content is greater than 4wt%. These carbides would aggregate around the grain boundary, and as a result, the thermal conductivity is decreased. By the addition of Mo whose content is about 2wt%, spherical carbides will be formed, thus improving the thermal conductivity of the medium manganese steel. The interaction between rare earth elements and alloying elements will raise both the thermal conductivity and the wear-resisting property of medium manganese steel.
文摘The behavior of rare earth element Ce in 2090 Al Li alloys was studied by the method of low frequency internal friction.The results showed that rare earth element Ce can increase the activation energy of grain boundary and improve the grain boundary strength of alloys.Rare earth element Ce can decrease the tendency of softening of elastic modulus of 2090 Al Li alloys after heat cycle and keep high elastic modulus of initial state.
文摘The strong effect of rare earth(RE)on medium-temperature internal friction(IF)of commercially pure iron is closely related to the heat treatment.The RE added into iron has an alloying effect.The Snoek-Ke-Kster(briefly SKK)peak lower as the aging temperature in- creases from 150℃ to 450℃,but it still exists even aged at 600℃.However,the SKK peak temperature T_p does not simply falls as the ascending of aging temperature,it rises again at 600℃ aging.
基金Project supported by the National Natural Science Foundation of China(51101136)Natural Science Foundation of Hebei Province(E2012203013)+1 种基金College Science and Technology Research Project of Hebei Province,China(QN2014107)College Innovation Team Leader Training Program of Hebei Province,China(LJRC012)
文摘The effect of rare earth(RE) on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel was investigated at 650 °C under different stress levels. It was found that RE could increase the time to creep rupture, especially at long-term creep duration. The logarithm of the time to creep rupture(lgtr) was a linear function of the applied stress(σ). RE addition was favorable to generating a high fraction of low-coincidence site lattice(CSL) boundaries which was a possible cause for improving the creep rupture resistance. The fracture surface of RE-added steel exhibited less intergranular cracks suggesting the alteration on the nature of grain boundaries due to the presence of RE. RE addition changed the morphology of the intergranular chromium carbides from continuous network shape to fragmentary distribution which was another cause for longer creep duration. These results strongly suggested that the effect of RE alloying played a crucial role in improving the creep rupture resistance.
文摘The profile of both hardness and microstructure of continuous casting blanks and rails of PD3 heavy rail steel and PD3RE steel containing small amount of rare earth (RE) added from tundish were studied. It is found that the addition of RE makes the fluctuation of the hardness value decrease, and inhibits effectively and/or even removes lower hardness value(zone) in the centric area of the blank with a cross section of 280 mm × 380 mm, and that the surface layer in the rail head of PD3RE steel is obviously hardened and the reason causing this hardening is due to the thinning of the pearlite structure. The metallographic observation shows that there exists a Fe-P(C) eutectic structure in the blank center of the PD3 steel containing only 0. 016% P, while the addition of RE can fully inhibit this structure.
文摘The influence of rare earth on the friction and wear characteristics of magnesium alloy AZ91 and AM60 were studied. The results show that the wear resistance properties of rare earth magnesium alloys are better than those of matrix alloy under the testing conditions. The anti wear behaviour of AZ91 alloy is much better than that of AM60 alloy. In dry sliding process,magnesium alloys undergo a transition from mild wear to severe wear. The addition of rare earths refine the structure of alloys, improve the comprehensive behaviors of magnesium alloys, increase the stability of oxidation films on worn surfaces, enhance the loading ability of rare earth magnesium alloys, and delay the transition from mild wear to severe wear effectively.
基金financially supported by the National Natural Science Foundation of China (No. 51774024)
文摘To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.
基金Item Sponsored by Key Science and Technology Plan Foundation of Henan of China (0423023500) and Natural ScienceFoundation of Henan Province (0511021600)
文摘The effects of the addition of rare earth (RE) elements on the void band in the diffusion layer, and the re sistances to both oxidation and spalling of aluminized steel were investigated through high temperature oxidation and spalling tests. The results showed that RE had significant effects on the void band in the diffusion layer and the properties of aluminized steel. After diffusion treatment, a considerable number of the voids between the middle layer and transitional layer of pure aluminized coating, aggregated into wavy-line-shaped void bands parallel to the outer surface. For the RE added aluminized coating, only a few voids aggregated into intermittent block shapes. During high temperature oxidation at 800 ℃ for 200 h, the wavy void band of pure aluminized coating aggregated further into a linear crack parallel to the outer surface, and the internal oxidation occurred within them; the open cracks perpendicular to the surface penetrated through the diffusion layer. For the RE added aluminized coating, only a few voids aggregated into intermittent meniscus shapes. During cyclic spalling tests, the peeling, spallation, and pulver ulent cracking occurred along the void band in the diffusion layer of pure aluminized coating, but only a little spallation occurred in the diffusion layer of the RE-added aluminized coating, in which cracks perpendicular to the surface were much smaller than those of pure aluminized coating and did not penetrate through the diffusion layer. It is evident that RE addition can restrain the formation and aggregation of voids and subsequently improve the resistances to oxidation and spalling. The mechanism of the RE effect on the void band in the diffusion layer is also discussed.
文摘With the improvement of the clean steel by degrees, the functions of rare earth metals in steel are more focused on modification of inclusions and micro alloying.The new study concerning the application of RE metals in clean steels were investigated by ICP, metallographic examination, SEM, EDS, EPMA, TEM and IMMA.The mechanism of corrosion resistance in the weather resistance steel was clarified.The mechanism of abrasion resistance and the life of fatigue enhanced in the RE - heavy rails steel were discussed.Progress in study of application of rare earth metals in steels (including weather resistance steel, low alloy steel, and heavy rails steel) was covered in this paper.
文摘The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloy AZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are better than those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear to severe wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of the magnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.
基金Project supported bythe Ministry of National Science and Technique (2002BA315A-5-1-2)
文摘The internal frictions of the specimens in the waist centre of the commercial BNb and BNbRE rails, which were left in air for two years, were measured. It is found that there is an obvious Snoek-Kê-Koester (SKK) peak in both steels, and still exists a measurable deformation-enhanced Shock peak(DESP) in the specimens of the BNbRE steel. The internal frictions in the deformed specimens of the both steel rails were also measured. Unlike the case of the tread specimens showing a decrease of SKK damping due to deformation, the SKK damping of the rail waist specimens increases after deformation; and the specimens containing rare earth(RE) show more noticeable damping increase than those without RE. The results of the internal friction measured during ascending and descending temperature under 700℃ show that there is a high temperature damping which can be completely disappeared during descending temperature for both steels.
文摘The phase transformation kinetics of pearlite to austenite in low alloy steel containing RE was studied by the methods of DSC. The results show that the apparent transformation activation energy of pearlite to austenite in the low alloy steel is 1141.04 kJ·mol -1, and the transformation activation energy of pearlite to austenite decreases with increasing of the volume fraction of transformation phase. Through which, the relationship curve between the volume fraction of transformation phase and the temperature were drawn.
基金supported by the High Technology Research Project of Science and Technology Department of Guizhou Province(GY[2008]3029,SY[2010]3037)
文摘In order to improve the performance of the metal rollers, Mo+Y2O3 alloy powders were used to coat uniformly on the surface of 40Cr steel roller substrates for the laser surface alloying treatment by a CO2 laser, The results showed that many good consequences were ob- tained after adding the rare earth oxide Y2O3. The crystal grains of the alloy layer were significantly refined. The boundary of crystal grains was strengthened. The unifomaity and density of the microstructure were increased. The hardness and wearing resistance of the alloy layer were considerably improved. The valence electron structure analysis of the alloy layer was made by the empirical electron theory of solids and molecules (EET). The calculated results demonstrated that Y should be mixed in the first stage and Fe should be in the eighteenth hybrid bands. The analyzed outcomes illustrated that the electron theory of the solid solution shows the strengthening effect on the alloying layer, which has enhanced bond and confirrned the experimental results.
基金Department of Science and Technology,India[grant number of DST/TDT/AMT/2017/211(G)(MEE/18-19/412/DSTX/SUSH)for the financial supportFIST grant,Department of Science and Technology,India[grant number SR/FST/ET11-059/2012(G)]for funding electron microscope facility。
文摘Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying the tension to compression asymmetry problem and strain hardening anomalies in a Magnesium–Silver–Rare Earth alloy by engineering different levels of microstructural conditions via friction stir processing and post process annealing.The existence and extent of yield asymmetry ratio in the range of microstructural conditions was experimentally obtained through quasistatic tensile and compression tests.The yield asymmetry problem was profoundly present in specimens of coarse grained microstructures when compared to their fine grained and ultra fine grained counterparts.The impact of the microstructure and associated mechanisms of plasticity on the macroscopic strain hardening behavior was established by Kock–Mecking’s analysis.Crystal plasticity simulations using Viscoplastic Self Consistency approach revealed the consequential role of extension twinning mechanism for the existence of yield asymmetry and anomalies in strain hardening behavior.This was especially dominant with coarsening of grain size.Electron Microscopy and characterization were conducted thoroughly in partially deformed specimens to confirm the predictions of the above simulations.The role of crystallographic texture for inducing the polarity to Tension–Compression yield asymmetry was corroborated.A critical grain size in Magnesium–Silver–Rare earth alloy was hereby established which could nullify influences of extension twinning in yield asymmetry ratio.
文摘The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ξ = Ktn, the reaction index n = 0.50 approximately 0.75. The higher the oxidation temperature is, the larger the n value is. It means that the internal oxidation of wire sampls at high temperature deviates from parabola rule observed on plate sample. The activation energies of the studied alloys range over 120 approximately 160 kJ/mol. The internal oxidation process is controlled by the bulk diffusion of oxygen.
文摘The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlBi alloy was measured, and the influence of loading and rotation speed on friction and wear properties of CuAlBi alloy was also discussed. The results show that the friction coefficient increase then decrease with increase of connecting loading as well as decreases with increase of friction speed, and the wear loss mass increases with increase of connecting loading and friction speed. As a result, the wear failure form of CuAlBi alloy is mainly ploughing.
文摘The friction and wear behaviors of the Cu-Cr alloy sliding against GCr15 steel at different loads and rotate speed conditions were evaluated, and the worn surface morphologies were observed on a scanning electron microscope. Results show that as loads and rotate speed increase, the wear loss weight increases, by comparison, the biggest friction coefficient of Cu-Cr alloy was obtained at load 100 N and rotate speed at 100 r·min-1 friction condition. Moreover, the dominant wear forms was plough wear.
基金the National Natural Science Foundation of China(No.51071061)the Heilongjiang Postdoctoral Subsidies,China(No.LBHZ10199)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.HEUCFR1129)the China Postdoctoral Science Foundation(No.20110491026)for financial support of this research work
文摘Low temperature plasma nitrocarburizing of 17-4PH martensitic stainless steel was conducted at 430 ℃ with and without rare earth (RE) addition. The microstructure, kinetics, microhardness, wear behavior as well as corrosion resistance of the modified layer were studied by optical microscopy, X-ray diffraction, Vickers microhardness tester, pin-on-disc tribometer and potentiodynamic polarization tests. The results show that the thickness of plasma RE nitrocarburized layer is much thicker than that formed by nitrocarburizing without RE addition. The incorporation of RE does not change the kind of the phases and the nitrocarburized layer consists mainly of nitrogen and carbon expanded martensite (aN), γ-Fe4N and a-Fe with a trace of CrN phases. The surface microhardness of plasma nitrocarburized layer can be increased by 100 HV after RE addition. Wear resistance of the specimen can be apparently improved by low temperature plasma nitrocarburizing with and without RE addition and without sacrificing its corrosion resistance. Wear reduction effect of low temperature plasma nitrocarburizing with RE addition is better than that of the conventional one.