A family of highly bulky bis(salicylaldiminate)Co(Ⅱ)complexes bearing cavity-like conformations are disclosed herein.Due to their unique bulky nature around the cobalt atoms that are reflected from space-filling mode...A family of highly bulky bis(salicylaldiminate)Co(Ⅱ)complexes bearing cavity-like conformations are disclosed herein.Due to their unique bulky nature around the cobalt atoms that are reflected from space-filling models and the buried volume percentages,obviously longer bond distances of Co―N and Co―O are revealed from those complexes.Moreover,because of these well-protected active species,the cobalt complexes are able to catalyze 1,3-butadiene polymerization in high yields at extreme low catalyst concentrations,revealing a ultra high catalytic efficiency.At a ratio of 50000,all the complexes can afford polybutadiene with yields higher than 90%.Furthermore,the highly steric bulkiness of the ligand can also significantly enhance the thermostability of the active species.At temperature of 80-120°C,the complexes are able to successfully maintain high activities,giving polymer yields up to 90%.展开更多
Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stere...Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stereoselectivity better than those of traditional metallocene and Ziegler-Natta catalysts in diene polymerization. In this work, a series of neodymium organic sulfonate complexes,Nd(CF_3SO_3)_3·x H_2O·y L(x, y: the coordination number; L refers to an organic electron donating ligand, such as acetylacetone(acac), isooctyl alcohol(IAOH), tributyl phosphate(TBP), etc.), have been synthesized to form the cationic active species in the presence of alkylaluminum such as Al(i-Bu)_3, AlEt_3, and Al(i-Bu)_2H, which display high activities and distinguishing cis-1,4 selectivities(up to99.9%) for the polymerization of butadiene. The microstructures, yield, molecular weight, and molecular weight distribution of the resulting polymer are well controlled by adjusting electronegativity/steric hindrance of the complexes. In addition, the kinetics, active species, and the possible process of polymerization are also discussed in this article.展开更多
The neodymium complexes with crosslinked polystyrene containing -CH2SH and -CH2SOCH3 groups, P-CH2SH . NdCl3 and P-CH2SOCH3. NdCl3, were prepared. P-CH2SH . NdCl3 shows no catalytic activity for butadiene polymerizati...The neodymium complexes with crosslinked polystyrene containing -CH2SH and -CH2SOCH3 groups, P-CH2SH . NdCl3 and P-CH2SOCH3. NdCl3, were prepared. P-CH2SH . NdCl3 shows no catalytic activity for butadiene polymerization, while P-CH2SOCH3. NdCl3 can catalyze the polymerization of butadiene. The content of cis-1,4-polybutadiene is more than 95%.展开更多
An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene poly...An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene polymerization and theeffects of polymerization conditions such as temperature, aluminum/iron molar ratio on the activity of catalyst and thecharacteristics of polyethylene were reported. The unsymmetric catalyst 1' has a good catalytic performance of 3.47×10~6 gPE·mol^(-1)·Fe·h^(-1) at 40℃ with aluminum/iron molar ratio = 2500. A dependence of catalyst activity on themethylaluminoxane (MAO) concentration and reaction temperature was found. The molecular weight (MW) of polyethylenewith broad dispersity is about 10~4-10~5 g/mol. The melting temperature and branching of polyethylenes vary with changingreaction temperature and aluminum/iron molar ratio.展开更多
he polymers containing different ligand groups of atoms(mainly O,N,and S)and their rare earth complexes were prepared,characterized and classified based on the type of metal-ligand bonding. The catalytic activities of...he polymers containing different ligand groups of atoms(mainly O,N,and S)and their rare earth complexes were prepared,characterized and classified based on the type of metal-ligand bonding. The catalytic activities of the complexes are briefly discussed.The polymer- supported rare earth complexes shwed much greater activities than the correspond- ing complexes with a low molecular weight.展开更多
Catalytic wet air oxidation(CWAO)is one of the most promising technologies for pollution abatement.Developing catalysts with high activity and stability is crucial for the application of the CWAO process.The Mn/Ce com...Catalytic wet air oxidation(CWAO)is one of the most promising technologies for pollution abatement.Developing catalysts with high activity and stability is crucial for the application of the CWAO process.The Mn/Ce com-plex oxide catalysts for CWAO of high concentration phenol-containing wastewater were prepared by coprecipitation.The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis.The Mn/Ce serial catalysts were characterized by Brunauer-Emmett-Teller(BET)analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry(ICP-AES).The results show that the catalysts have high catalytic activities even at a low temperature(80°C)and low oxygen partial pressure(0.5 MPa)in a batch reactor.The metallic ion leaching is comparatively low(Mn<6.577 mg/L and Ce<0.6910 mg/L,respectively)in the CWAO process.The phenol,COD_(Cr),and TOC removal efficiencies in the solution exceed 98.5%using the optimal catalyst(named CSP).The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.展开更多
Supported rare earth catalysts were made from Nd(O i Pr) 3 and the chlorides as well as bromides of the elements of ⅠA and ⅡA groups which were used as supporters of the catalyst. In the study on the relationship be...Supported rare earth catalysts were made from Nd(O i Pr) 3 and the chlorides as well as bromides of the elements of ⅠA and ⅡA groups which were used as supporters of the catalyst. In the study on the relationship between the composition of supporters and the polymerization activity of butadiene in the presence of the supported rare earth catalysts, it was found that the electronegativity of ⅠA or ⅡA elements has an obvious effect on the activity of supported catalysts, that is the activity of the supported catalyst increases with the increasing of the electronegativity. This phenomenon is explained in terms of the interaction between the HOMO of the butadiene and the LUMO of the neodymium. This rule also holds in the case when halides of magnesium were used as supporters.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.U1862206 and 21801236)。
文摘A family of highly bulky bis(salicylaldiminate)Co(Ⅱ)complexes bearing cavity-like conformations are disclosed herein.Due to their unique bulky nature around the cobalt atoms that are reflected from space-filling models and the buried volume percentages,obviously longer bond distances of Co―N and Co―O are revealed from those complexes.Moreover,because of these well-protected active species,the cobalt complexes are able to catalyze 1,3-butadiene polymerization in high yields at extreme low catalyst concentrations,revealing a ultra high catalytic efficiency.At a ratio of 50000,all the complexes can afford polybutadiene with yields higher than 90%.Furthermore,the highly steric bulkiness of the ligand can also significantly enhance the thermostability of the active species.At temperature of 80-120°C,the complexes are able to successfully maintain high activities,giving polymer yields up to 90%.
基金the National Natural Science Foundation of China(Nos.51473156 and 51873203)Key Projects of Jilin Province Science and Technology Development Plan(Nos.2018020108GX and 20160204028GX)
文摘Rare earth catalysts possessing characteristics of cation-anion ion pair show advantages of adjusting electronegativity and steric hindrance of metal active sites, which can control the catalytic performance and stereoselectivity better than those of traditional metallocene and Ziegler-Natta catalysts in diene polymerization. In this work, a series of neodymium organic sulfonate complexes,Nd(CF_3SO_3)_3·x H_2O·y L(x, y: the coordination number; L refers to an organic electron donating ligand, such as acetylacetone(acac), isooctyl alcohol(IAOH), tributyl phosphate(TBP), etc.), have been synthesized to form the cationic active species in the presence of alkylaluminum such as Al(i-Bu)_3, AlEt_3, and Al(i-Bu)_2H, which display high activities and distinguishing cis-1,4 selectivities(up to99.9%) for the polymerization of butadiene. The microstructures, yield, molecular weight, and molecular weight distribution of the resulting polymer are well controlled by adjusting electronegativity/steric hindrance of the complexes. In addition, the kinetics, active species, and the possible process of polymerization are also discussed in this article.
文摘The neodymium complexes with crosslinked polystyrene containing -CH2SH and -CH2SOCH3 groups, P-CH2SH . NdCl3 and P-CH2SOCH3. NdCl3, were prepared. P-CH2SH . NdCl3 shows no catalytic activity for butadiene polymerization, while P-CH2SOCH3. NdCl3 can catalyze the polymerization of butadiene. The content of cis-1,4-polybutadiene is more than 95%.
基金This work was financially supported by the National Natural Science Foundation of China (No. 29734141, 50103012) Core Research for Engineering Innovation KGCX2-203, the Foundation of "One Hundred Talents" program for W-H Sun, Chinese Academy of Sciences
文摘An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene polymerization and theeffects of polymerization conditions such as temperature, aluminum/iron molar ratio on the activity of catalyst and thecharacteristics of polyethylene were reported. The unsymmetric catalyst 1' has a good catalytic performance of 3.47×10~6 gPE·mol^(-1)·Fe·h^(-1) at 40℃ with aluminum/iron molar ratio = 2500. A dependence of catalyst activity on themethylaluminoxane (MAO) concentration and reaction temperature was found. The molecular weight (MW) of polyethylenewith broad dispersity is about 10~4-10~5 g/mol. The melting temperature and branching of polyethylenes vary with changingreaction temperature and aluminum/iron molar ratio.
文摘he polymers containing different ligand groups of atoms(mainly O,N,and S)and their rare earth complexes were prepared,characterized and classified based on the type of metal-ligand bonding. The catalytic activities of the complexes are briefly discussed.The polymer- supported rare earth complexes shwed much greater activities than the correspond- ing complexes with a low molecular weight.
基金This work was supported by the National High-Tech Research and Development Program of China(Grant No.2002AA601260)。
文摘Catalytic wet air oxidation(CWAO)is one of the most promising technologies for pollution abatement.Developing catalysts with high activity and stability is crucial for the application of the CWAO process.The Mn/Ce com-plex oxide catalysts for CWAO of high concentration phenol-containing wastewater were prepared by coprecipitation.The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis.The Mn/Ce serial catalysts were characterized by Brunauer-Emmett-Teller(BET)analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry(ICP-AES).The results show that the catalysts have high catalytic activities even at a low temperature(80°C)and low oxygen partial pressure(0.5 MPa)in a batch reactor.The metallic ion leaching is comparatively low(Mn<6.577 mg/L and Ce<0.6910 mg/L,respectively)in the CWAO process.The phenol,COD_(Cr),and TOC removal efficiencies in the solution exceed 98.5%using the optimal catalyst(named CSP).The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.
文摘Supported rare earth catalysts were made from Nd(O i Pr) 3 and the chlorides as well as bromides of the elements of ⅠA and ⅡA groups which were used as supporters of the catalyst. In the study on the relationship between the composition of supporters and the polymerization activity of butadiene in the presence of the supported rare earth catalysts, it was found that the electronegativity of ⅠA or ⅡA elements has an obvious effect on the activity of supported catalysts, that is the activity of the supported catalyst increases with the increasing of the electronegativity. This phenomenon is explained in terms of the interaction between the HOMO of the butadiene and the LUMO of the neodymium. This rule also holds in the case when halides of magnesium were used as supporters.