利用重采样频域滤波(resample frequency domain filter,RFDF)方法,提取高荧光及随机噪声背景下的拉曼信号.仿真结果表明,在设计适当的滤波器情况下,该方法能得到很好的拉曼信号提取效果.若要获得较高的拉曼光谱信号保真度,需考虑不同...利用重采样频域滤波(resample frequency domain filter,RFDF)方法,提取高荧光及随机噪声背景下的拉曼信号.仿真结果表明,在设计适当的滤波器情况下,该方法能得到很好的拉曼信号提取效果.若要获得较高的拉曼光谱信号保真度,需考虑不同成分信号功率谱的混叠程度、光谱数据的分辨率和采样率、频域带通滤波器的设计形式及参数等影响因素.展开更多
The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we de...The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.展开更多
Resonance enhancement has been increasingly employed in the emergent felntosecond stimu- lated Raman spectroscopy (FSRS) to selectively monitor molecular structure and dynamics with improved spectral and temporal re...Resonance enhancement has been increasingly employed in the emergent felntosecond stimu- lated Raman spectroscopy (FSRS) to selectively monitor molecular structure and dynamics with improved spectral and temporal resolutions and signal-to-noise ratios. Such joint eflforts by the technique- and application-oriented scientists and engineers have laid the foundation for exploiting the tunable FSRS methodology to investigate a great variety of photosensitive systems and elucidate the underlying functional mechanisms on molecular time scales. Dur- ing spectral analysis, peak line shapes remain a major concern with an intricate dependence on resonance conditions. Here, we present a comprehensive study of line shapes by tuning the Rarnan pump wavelength from red to blue side of the ground-state absorption band of the fluorescent dye rhodarnine 6G in solution. Distinct line shape patterns in Stokes and anti-Stokes FSRS as well as from the low to high-frequency modes highlight the competition between multiple third-order and higher-order nonlinear pathways, governed by difl^rent res- onance conditions achieved by Raman pump and probe pulses. In particular, the resonance condition of probe wavelength is revealed to play an important role in generating circular line shape changes through oppositely phased dispersion via hot luminescence (HL) pathways. Meanwhile, on-resonance conditions of the Rarnan pump could promote excited-state vibrational modes which are broadened and red-shifted from the coincident ground-state vibrational modes, posing challenges for spectral analysis. Certain strategies in tuning the Raman pump and probe to characteristic regions across an electronic transition band are discussed to improve the FSRS usability and versatility as a powerful structural dynamics toolset to advance chemical, physical, materials, and biological sciences.展开更多
文摘利用重采样频域滤波(resample frequency domain filter,RFDF)方法,提取高荧光及随机噪声背景下的拉曼信号.仿真结果表明,在设计适当的滤波器情况下,该方法能得到很好的拉曼信号提取效果.若要获得较高的拉曼光谱信号保真度,需考虑不同成分信号功率谱的混叠程度、光谱数据的分辨率和采样率、频域带通滤波器的设计形式及参数等影响因素.
基金supported by the National Natural Science Foundation of China (No.61575087, No.21505057, and No.61771227)the Natural Science Foundation ofJiangsu Province (No.BK20151164, No.BK20150227, and No.BK20170229)+2 种基金the Innovation Project of Jiangsu Province(No.KYLX16_1322)the Natural Science Foundation of the Jiangsu Higher Education Institutions (No.17KJB140007)Foundation of Xuzhou City (No.KC15MS030)
文摘The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.
基金supported by the U.S.National Science Foundation CAREER grant(CHE-1455353)the Oregon State University(OSU) Research Equipment Reserve Fund(Spring 2014)to C.Fang(USTC9603)the Wei Family Private Foundation in supporting C.Chen(USTC 0903) during his graduate studies at OSU Chemistry
文摘Resonance enhancement has been increasingly employed in the emergent felntosecond stimu- lated Raman spectroscopy (FSRS) to selectively monitor molecular structure and dynamics with improved spectral and temporal resolutions and signal-to-noise ratios. Such joint eflforts by the technique- and application-oriented scientists and engineers have laid the foundation for exploiting the tunable FSRS methodology to investigate a great variety of photosensitive systems and elucidate the underlying functional mechanisms on molecular time scales. Dur- ing spectral analysis, peak line shapes remain a major concern with an intricate dependence on resonance conditions. Here, we present a comprehensive study of line shapes by tuning the Rarnan pump wavelength from red to blue side of the ground-state absorption band of the fluorescent dye rhodarnine 6G in solution. Distinct line shape patterns in Stokes and anti-Stokes FSRS as well as from the low to high-frequency modes highlight the competition between multiple third-order and higher-order nonlinear pathways, governed by difl^rent res- onance conditions achieved by Raman pump and probe pulses. In particular, the resonance condition of probe wavelength is revealed to play an important role in generating circular line shape changes through oppositely phased dispersion via hot luminescence (HL) pathways. Meanwhile, on-resonance conditions of the Rarnan pump could promote excited-state vibrational modes which are broadened and red-shifted from the coincident ground-state vibrational modes, posing challenges for spectral analysis. Certain strategies in tuning the Raman pump and probe to characteristic regions across an electronic transition band are discussed to improve the FSRS usability and versatility as a powerful structural dynamics toolset to advance chemical, physical, materials, and biological sciences.