Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional...Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.展开更多
Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. ...Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.展开更多
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining...We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j^Ts,xi and j^Ts,yi(i=x, y, z). We find that the elements j^Ts,xx and j^Ts,yy have a antisymmetrical relation and the element j^Ts,yz has the same amount levelas j^Ts,xx and j^Ts,yy. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.展开更多
This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thick...This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thickness of the insulator between the ferromagnet and the semiconductor on the polarization is also considered. The obtained results indicate that (i) the polarization can be enhanced by reducing the insulator layers at zero temperature, and (ii) the tunnelling magnetoresistance inversion can be illustrated by the influence of the Dresselhaus spin-orbit coupling effect in the double-barrier structure. Due to the Dresselhaus spin-orbit coupling effect, the tunnelling magnetoresistance inversion occurs when the energy of a localized state in the barrier matches the Fermi energy EF of the ferromagnetic electrodes.展开更多
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the...Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.展开更多
Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show th...Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show that conduc- tances remain at exactly the same values when the output leads are located at axisymmetric positions. However, for the nonaxisymmetrical case, there is a phase difference between the upper and lower arm, which leads to zero conductances appearing periodically. An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition, the position of zero conductance is regulated with the strength of the Rashba SOC.展开更多
We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two...We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.展开更多
We study the theoretical effect of k-cubic (i.e, cubic-in-momentum) Dresselhaus spin-orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the...We study the theoretical effect of k-cubic (i.e, cubic-in-momentum) Dresselhaus spin-orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin-orbit coupling, and after taking the effect of k-cubic Dresselhaus spin-orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results.展开更多
The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting ...The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positionsl unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.展开更多
We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin-orbit coupling considered in one of the superconducting leads.It is found that an an...We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin-orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can induce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.展开更多
By solving the Bogoliubov-de Gennes equation, the influence of the interplay of Rashba spin-orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge tra...By solving the Bogoliubov-de Gennes equation, the influence of the interplay of Rashba spin-orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder-Tinkham-Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin-orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.展开更多
High mobility quasi two-dimensional electron gas(2DEG)found at the CaZrO_(3)/SrTiO_(3) nonpolar heterointerface is attractive and provides a platform for the development of functional devices and nanoelectronics.Here ...High mobility quasi two-dimensional electron gas(2DEG)found at the CaZrO_(3)/SrTiO_(3) nonpolar heterointerface is attractive and provides a platform for the development of functional devices and nanoelectronics.Here we report that the carrier density and mobility at low temperature can be tuned by gate voltage at the CaZrO_(3)/SrTiO_(3) interface.Furthermore,the magnitude of Rashba spin-orbit interaction can be modulated and increases with the gate voltage.Remarkably,the diffusion constant and the spin-orbit relaxation time can be strongly tuned by gate voltage.The diffusion constant increases by a factor of~19.98 and the relaxation time is reduced by a factor of over three orders of magnitude while the gate voltage is swept from-50 V to 100 V.These findings not only lay a foundation for further understanding the underlying mechanism of Rashba spin-orbit coupling,but also have great significance in developing various oxide functional devices.展开更多
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in...Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.展开更多
We investigate theoretically the spin accumulation in a Rashba spin-orbit coupling (SOC) nanoribbon nonadiabatically connected to a normal conductor.Both the nanoribbon and conductor are described by a hard-wall confi...We investigate theoretically the spin accumulation in a Rashba spin-orbit coupling (SOC) nanoribbon nonadiabatically connected to a normal conductor.Both the nanoribbon and conductor are described by a hard-wall confining potential.Using the scattering matrix approach within the effective free-electron approximation,we have calculated the out-of-plane spin accumulation in the nanoribbon.It is found that the spin accumulation shifts toward the two edges of nanoribbon with the increasing of propagation modes.Specifically,as the Rashba SOC strength increases the spin accumulation in the nanoribbon will be enhanced and this result may suggest us a simple method to control the spin accumulation of the system by Rashba SOC strength.展开更多
We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh G...We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh Green's function method, we present an analytic result of the pumped current at adiabatic limit and demonstrate that the interplay between the quantum pumping effect and spin-dependent quantum interference can lead to an arbitrarily controllable spin-polarized current in the device. The magnitude and direction of the charge and spin current can be effectively modulated by system parameters such as the pumping phase difference, Rashba precession phase, and the dynamic phase difference of electron traveling in two arms of ring; moreover, the spin-polarization degree of the charge current can also be tuned in the range [-∞, +∞]. Our findings may shed light on the all-electric way to produce the controllable spin-polarized charge current in the field of spintronics.展开更多
We study the spin-resolved transport in a two-terminal graphene nanoflake device with a Rashba spinorbit coupling region in the center of the device. The Green's function method is applied to the system and the sp...We study the spin-resolved transport in a two-terminal graphene nanoflake device with a Rashba spinorbit coupling region in the center of the device. The Green's function method is applied to the system and the spin transmission probability and the spin polarization in x, y, and z directions are calculated. It is found that the components of the spin polarization are antisymmetric functions of Fermi energy, which oscillate and decay to the zero with increasing the energy for all values of the Rashba strength. It is shown that by tuning the Rashba strength via a gate voltage and/or changing the size of the system, it is possible to control the sign and magnitude of the spin polarization. The system represented here is a typical candidate for full electrical spintronic devices based on the carbon materials that are used for spin filtration.展开更多
We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor,which is fabricated by combination of an s-wave superconductor,a ferromagnet and a semiconductor with Rashba spin-orbit coupling...We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor,which is fabricated by combination of an s-wave superconductor,a ferromagnet and a semiconductor with Rashba spin-orbit coupling(RSOC).The proximity induced superconducting states include the s-wave and p-wave pairing components with the aids of RSOC,and the ferromagnet induces a Zeeman field which removes the spin degeneracy of the quasiparticles in the triplet states.Thus,the Kondo screening of magnetic impurity involves the orbital degrees of freedom,and is also affected by the Zeeman field.Using the variational method,we calculate the binding energy and the spin-spin correlation between the magnetic impurity and the electrons in the coexisting s-wave and p-wave pairing states.We find that Kondo singlet forms more easily with stronger RSOC,but Zeeman field in general decreases the binding energy.The spin-spin correlation decays fast in the vicinity of the magnetic impurity.Due to the RSOC,the spatial spin-spin correlation becomes highly anisotropic,and the Zeeman field can induce extra asymmetry to the off-diagonal components of the spin-spin correlation.Our study can offer some insights into the studies of extrinsic topological superconductors fabricated from the hybrid structures containing chains of magnetic impurities.展开更多
The anomalous Hall effect of heavy holes in semiconductor quantum wells is studied in the intrinsic transport regime, where the Berry curvature governs the Hall current properties. Based on the first-order perturbatio...The anomalous Hall effect of heavy holes in semiconductor quantum wells is studied in the intrinsic transport regime, where the Berry curvature governs the Hall current properties. Based on the first-order perturbation of wave function the expression of the Hall conductivity the same as that from the semiclassical equation of motion of the Bloch particles is derived. The dependence of Hall conductivity on the system parameters is shown. The amplitude of Hall conductivity is found to be balanced by a competition between the Zeemaa splitting and the spin-orbit splitting.展开更多
We extend the Blonder, Tinkham and Klapwijk (BTK) theory to the study of the coexistence between ferromagnetism and s-wave superconductivity in ferromagnet/superconductor (F/S) structures. It is found that the fer...We extend the Blonder, Tinkham and Klapwijk (BTK) theory to the study of the coexistence between ferromagnetism and s-wave superconductivity in ferromagnet/superconductor (F/S) structures. It is found that the ferromagnetism and s-wave superconductivity can coexist near the F/S interface, which is induced by proximity effects. On the F side, the density of states (DOS) exhibits some superconducting-like properties, and it displays a damped oscillation from ‘0' to ‘v' states with increasing either the thickness of F film or the exchange energy. We also study the influences of the spin-polarized exchange splitting in the F and the spin-degeneracy by Rashba spin-orbit coupling (RSOC) in the two-dimensional electron gas (2DGE) on the proximity effects. It is shown that the case of Rashba spin-degeneracy is very different from that of the spin-polarized exchange splitting.展开更多
文摘Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176089 and 11504083)the Foundation of Shijiazhuang University,China(Grant No.XJPT002)
文摘Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060542002the Hunan Provincial Natural Science Foundation of China under Grant No.06JJ2097the Hunan College of Science and Technology Research Foundation of China under Grant No.07XKYTB001
文摘We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j^Ts,xi and j^Ts,yi(i=x, y, z). We find that the elements j^Ts,xx and j^Ts,yy have a antisymmetrical relation and the element j^Ts,yz has the same amount levelas j^Ts,xx and j^Ts,yy. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
基金supported by the National Natural Science Foundation of China (Grant No 10674040)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060094002)
文摘This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thickness of the insulator between the ferromagnet and the semiconductor on the polarization is also considered. The obtained results indicate that (i) the polarization can be enhanced by reducing the insulator layers at zero temperature, and (ii) the tunnelling magnetoresistance inversion can be illustrated by the influence of the Dresselhaus spin-orbit coupling effect in the double-barrier structure. Due to the Dresselhaus spin-orbit coupling effect, the tunnelling magnetoresistance inversion occurs when the energy of a localized state in the barrier matches the Fermi energy EF of the ferromagnetic electrodes.
文摘Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.61176089)Hebei Provincial Natural Science Foundation,China(Grant No.A2011205092)
文摘Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show that conduc- tances remain at exactly the same values when the output leads are located at axisymmetric positions. However, for the nonaxisymmetrical case, there is a phase difference between the upper and lower arm, which leads to zero conductances appearing periodically. An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition, the position of zero conductance is regulated with the strength of the Rashba SOC.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775091,10774094,10974124,and 11047172)the Excellent Youth and Midlife Scientist Scientific Research Encouragement Foundation of Shandong Province,China(Grant No. BS2010DS006)the Doctor Research Startup Foundation of Linyi University,China (Grant No. BS201023)
文摘We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.
基金Project supported by the National Natural Science Foundation of China (Grant No.10874049)
文摘We study the theoretical effect of k-cubic (i.e, cubic-in-momentum) Dresselhaus spin-orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin-orbit coupling, and after taking the effect of k-cubic Dresselhaus spin-orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474033 and 60676056)the State Key Projects of Basic Research of China (Grant Nos 2006CB0L1000 and 2005CB623605)
文摘The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positionsl unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 110704032 and 110704033)the Natural Science Foundation of JiangSu Province,China (Grant No. BK2010416)the National Basic Research Program of China(Grant No. 2009CB945504)
文摘We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin-orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can induce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.
文摘By solving the Bogoliubov-de Gennes equation, the influence of the interplay of Rashba spin-orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder-Tinkham-Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin-orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.
基金supported by the National Natural Science Foundation of China(Grants Nos.92065110,11974048,and 12074334)。
文摘High mobility quasi two-dimensional electron gas(2DEG)found at the CaZrO_(3)/SrTiO_(3) nonpolar heterointerface is attractive and provides a platform for the development of functional devices and nanoelectronics.Here we report that the carrier density and mobility at low temperature can be tuned by gate voltage at the CaZrO_(3)/SrTiO_(3) interface.Furthermore,the magnitude of Rashba spin-orbit interaction can be modulated and increases with the gate voltage.Remarkably,the diffusion constant and the spin-orbit relaxation time can be strongly tuned by gate voltage.The diffusion constant increases by a factor of~19.98 and the relaxation time is reduced by a factor of over three orders of magnitude while the gate voltage is swept from-50 V to 100 V.These findings not only lay a foundation for further understanding the underlying mechanism of Rashba spin-orbit coupling,but also have great significance in developing various oxide functional devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61627813,62204018,and 61571023)the Beijing Municipal Science and Technology Project(Grant No.Z201100004220002)+2 种基金the National Key Technology Program of China(Grant No.2017ZX01032101)the Program of Introducing Talents of Discipline to Universities in China(Grant No.B16001)the VR Innovation Platform from Qingdao Science and Technology Commission.
文摘Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060542002the Hunan Provincial Natural Science Foundation of China under Grant No.06JJ2097the Hunan University of Science and Engineering Research Foundation of China under Grant No.07XKYTB001
文摘We investigate theoretically the spin accumulation in a Rashba spin-orbit coupling (SOC) nanoribbon nonadiabatically connected to a normal conductor.Both the nanoribbon and conductor are described by a hard-wall confining potential.Using the scattering matrix approach within the effective free-electron approximation,we have calculated the out-of-plane spin accumulation in the nanoribbon.It is found that the spin accumulation shifts toward the two edges of nanoribbon with the increasing of propagation modes.Specifically,as the Rashba SOC strength increases the spin accumulation in the nanoribbon will be enhanced and this result may suggest us a simple method to control the spin accumulation of the system by Rashba SOC strength.
基金Supported by National Natural Science Foundation of China under Grant Nos.110704032 and 110704033the Natural Science Foundation of JiangSu Province under Grant No.BK2010416
文摘We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh Green's function method, we present an analytic result of the pumped current at adiabatic limit and demonstrate that the interplay between the quantum pumping effect and spin-dependent quantum interference can lead to an arbitrarily controllable spin-polarized current in the device. The magnitude and direction of the charge and spin current can be effectively modulated by system parameters such as the pumping phase difference, Rashba precession phase, and the dynamic phase difference of electron traveling in two arms of ring; moreover, the spin-polarization degree of the charge current can also be tuned in the range [-∞, +∞]. Our findings may shed light on the all-electric way to produce the controllable spin-polarized charge current in the field of spintronics.
基金University of Kashan for supporting this work by Grant No.463821/03
文摘We study the spin-resolved transport in a two-terminal graphene nanoflake device with a Rashba spinorbit coupling region in the center of the device. The Green's function method is applied to the system and the spin transmission probability and the spin polarization in x, y, and z directions are calculated. It is found that the components of the spin polarization are antisymmetric functions of Fermi energy, which oscillate and decay to the zero with increasing the energy for all values of the Rashba strength. It is shown that by tuning the Rashba strength via a gate voltage and/or changing the size of the system, it is possible to control the sign and magnitude of the spin polarization. The system represented here is a typical candidate for full electrical spintronic devices based on the carbon materials that are used for spin filtration.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19A040003)。
文摘We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor,which is fabricated by combination of an s-wave superconductor,a ferromagnet and a semiconductor with Rashba spin-orbit coupling(RSOC).The proximity induced superconducting states include the s-wave and p-wave pairing components with the aids of RSOC,and the ferromagnet induces a Zeeman field which removes the spin degeneracy of the quasiparticles in the triplet states.Thus,the Kondo screening of magnetic impurity involves the orbital degrees of freedom,and is also affected by the Zeeman field.Using the variational method,we calculate the binding energy and the spin-spin correlation between the magnetic impurity and the electrons in the coexisting s-wave and p-wave pairing states.We find that Kondo singlet forms more easily with stronger RSOC,but Zeeman field in general decreases the binding energy.The spin-spin correlation decays fast in the vicinity of the magnetic impurity.Due to the RSOC,the spatial spin-spin correlation becomes highly anisotropic,and the Zeeman field can induce extra asymmetry to the off-diagonal components of the spin-spin correlation.Our study can offer some insights into the studies of extrinsic topological superconductors fabricated from the hybrid structures containing chains of magnetic impurities.
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos 10544004 and 10604010).
文摘The anomalous Hall effect of heavy holes in semiconductor quantum wells is studied in the intrinsic transport regime, where the Berry curvature governs the Hall current properties. Based on the first-order perturbation of wave function the expression of the Hall conductivity the same as that from the semiclassical equation of motion of the Bloch particles is derived. The dependence of Hall conductivity on the system parameters is shown. The amplitude of Hall conductivity is found to be balanced by a competition between the Zeemaa splitting and the spin-orbit splitting.
基金Project supported by the Natural Science Foundation of Education Bureau of Jiangsu Province, China (Grant No 05KJB140008), and the Program for Excellent Talents in Huaiyin Teachers College, China.Acknowledgment We are especially grateful to Professor D. Y. Xing for pointing out the problem in this paper.
文摘We extend the Blonder, Tinkham and Klapwijk (BTK) theory to the study of the coexistence between ferromagnetism and s-wave superconductivity in ferromagnet/superconductor (F/S) structures. It is found that the ferromagnetism and s-wave superconductivity can coexist near the F/S interface, which is induced by proximity effects. On the F side, the density of states (DOS) exhibits some superconducting-like properties, and it displays a damped oscillation from ‘0' to ‘v' states with increasing either the thickness of F film or the exchange energy. We also study the influences of the spin-polarized exchange splitting in the F and the spin-degeneracy by Rashba spin-orbit coupling (RSOC) in the two-dimensional electron gas (2DGE) on the proximity effects. It is shown that the case of Rashba spin-degeneracy is very different from that of the spin-polarized exchange splitting.