期刊文献+
共找到6,206篇文章
< 1 2 250 >
每页显示 20 50 100
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
1
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrowderived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization
2
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases
3
作者 YARA ALZGHOUL HALA J.BANI ISSA +8 位作者 AHMAD K.SANAJLEH TAQWA ALABDUH FATIMAH RABABAH MAHA AL-SHDAIFAT EJLAL ABU-EL-RUB FATIMAH ALMAHASNEH RAMADA R.KHASAWNEH AYMAN ALZU’BI HUTHAIFA MAGABLEH 《BIOCELL》 SCIE 2024年第4期559-569,共11页
Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent... Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function. 展开更多
关键词 bone marrow mesenchymal stem cells Adipose tissue mesenchymal stem cells Dental pulp stem cells Umbilical cord mesenchymal stem cells CARDIOMYOCYTES REGENEratION Myocardial infarction mesenchymal stem cells Differentiation IMMUNOMODULATION
下载PDF
Exosomes from bone marrow mesenchymal stem cells are a potential treatment for ischemic stroke 被引量:7
4
作者 Chang Liu Tian-Hui Yang +3 位作者 Hong-Dan Li Gong-Zhe Li Jia Liang Peng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2246-2251,共6页
Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effec... Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effects of MSC-Exo on ischemic stroke have been widely explored.However,the underlying mechanism remains unclear.In this study,we established a mouse model of ischemic brain injury induced by occlusion of the middle cerebral artery using the thread bolt method and injected MSC-Exo into the tail vein.We found that administration of MSC-Exo reduced the volume of cerebral infarction in the ischemic brain injury mouse model,increased the levels of interleukin-33(IL-33)and suppression of tumorigenicity 2 receptor(ST2)in the penumbra of cerebral infarction,and improved neurological function.In vitro results showed that astrocyte-conditioned medium of cells deprived of both oxygen and glucose,to simulate ischemia conditions,combined with MSC-Exo increased the survival rate of primary cortical neurons.However,after transfection by IL-33 siRNA or ST2 siRNA,the survival rate of primary cortical neurons was markedly decreased.These results indicated that MSC-Exo inhibited neuronal death induced by oxygen and glucose deprivation through the IL-33/ST2 signaling pathway in astrocytes.These findings suggest that MSC-Exo may reduce ischemia-induced brain injury through regulating the IL-33/ST2 signaling pathway.Therefore,MSC-Exo may be a potential therapeutic method for ischemic stroke. 展开更多
关键词 ASTROCYTES bone marrow mesenchymal stem cells brain injury EXOSOME IL-33 inflammation ischemic stroke neurological function NEURON ST2
下载PDF
Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway 被引量:4
5
作者 Xin Sun Li-Yi Huang +8 位作者 Hong-Xia Pan Li-Juan Li Lu Wang Gai-Qin Pei Yang Wang Qing Zhang Hong-Xin Cheng Cheng-Qi He Quan Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1067-1075,共9页
Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord ... Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord injury. In this study, we applied a combinatorial approach for treating spinal cord injury involving neuroprotection and rehabilitation, exploiting cell transplantation and functional sensorimotor training to promote nerve regeneration and functional recovery. Here, we used a mouse model of thoracic contusive spinal cord injury to investigate whether the combination of bone marrow mesenchymal stem cell transplantation and exercise training has a synergistic effect on functional restoration. Locomotor function was evaluated by the Basso Mouse Scale, horizontal ladder test, and footprint analysis. Magnetic resonance imaging, histological examination, transmission electron microscopy observation, immunofluorescence staining, and western blotting were performed 8 weeks after spinal cord injury to further explore the potential mechanism behind the synergistic repair effect. In vivo, the combination of bone marrow mesenchymal stem cell transplantation and exercise showed a better therapeutic effect on motor function than the single treatments. Further investigations revealed that the combination of bone marrow mesenchymal stem cell transplantation and exercise markedly reduced fibrotic scar tissue, protected neurons, and promoted axon and myelin protection. Additionally, the synergistic effects of bone marrow mesenchymal stem cell transplantation and exercise on spinal cord injury recovery occurred via the PI3 K/AKT/mTOR pathway. In vitro, experimental evidence from the PC12 cell line and primary cortical neuron culture also demonstrated that blocking of the PI3 K/AKT/mTOR pathway would aggravate neuronal damage. Thus, bone marrow mesenchymal stem cell transplantation combined with exercise training can effectively restore motor function after spinal cord injury by activating the PI3 K/AKT/mTOR pathway. 展开更多
关键词 axon growth bone marrow mesenchymal stem cell exercise training mTOR neuroprotection NEUROTROPHIN REMYELINATION scar formation spinal cord injury synaptic plasticity
下载PDF
Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage 被引量:4
6
作者 Liu-Ting Hu Bing-Yang Wang +2 位作者 Yu-Hua Fan Zhi-Yi He Wen-Xu Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期560-567,共8页
Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypot... Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypothesis lacks direct evidence. In this study, we established rat models of ICH by injecting collagenase Ⅶ into the right basal ganglia and treating them with an injection of bone marrow mesenchymal stem cell(BMSC)-derived exosomal miR-23b via the tail vein. We found that edema in the rat brain was markedly reduced and rat behaviors were improved after BMSC exosomal miR-23b injection compared with those in the ICH groups. Additionally, exosomal miR-23b was transported to the microglia/macrophages, thereby reducing oxidative stress and pyroptosis after ICH. We also used hemin to mimic ICH conditions in vitro. We found that phosphatase and tensin homolog deleted on chromosome 10(PTEN) was the downstream target gene of miR-23b, and exosomal miR-23b exhibited antioxidant effects by regulating the PTEN/Nrf2 pathway. Moreover, miR-23b reduced PTEN binding to NOD-like receptor family pyrin domain containing 3(NLRP3) and NLRP3 inflammasome activation, thereby decreasing the NLRP3-dependent pyroptosis level. These findings suggest that BMSC-derived exosomal miR-23b exhibits antioxidant effects through inhibiting PTEN and alleviating NLRP3 inflammasome-mediated pyroptosis, thereby promoting neurologic function recovery in rats with ICH. 展开更多
关键词 bone marrow mesenchymal stem cells exosomal miRNAs intracerebral hemorrhage miR-23b NEUROINFLAMMATION NLRP3 inflammasome Nrf2 oxidative stress PTEN PYROPTOSIS
下载PDF
Human urokinase-type plasminogen activator gene-modifiedbone marrow-derived mesenchymal stem cells attenuateliver fibrosis in rats by down-regulating the Wnt signalingpathway 被引量:21
7
作者 Zhi-Gang Ma Xiao-Dan Lv +9 位作者 Ling-Ling Zhan Lan Chen Qi-Yuan Zou Ji-Qiao Xiang Jiao-Li Qin Wei-Wei Zhang Zhao-Jing Zeng Hui Jin Hai-Xing Jiang Xiao-Ping Lv 《World Journal of Gastroenterology》 SCIE CAS 2016年第6期2092-2103,共12页
AIM: To evaluate the therapeutic effects of bone marrow-derived mesenchymal stem cells(BMSCs) with human urokinase-type plasminogen activator(u PA) on liver fibrosis, and to investigate the mechanism of gene therapy.M... AIM: To evaluate the therapeutic effects of bone marrow-derived mesenchymal stem cells(BMSCs) with human urokinase-type plasminogen activator(u PA) on liver fibrosis, and to investigate the mechanism of gene therapy.METHODS: BMSCs transfected with adenovirusmediated human urokinase plasminogen activator(Adu PA) were transplanted into rats with CCl4-induced liver fibrosis. All rats were sacrificed after 8 wk, and their serum and liver tissue were collected for biochemical, histopathologic, and molecular analyzes. The degree of liver fibrosis was assessed by hematoxylin and eosin or Masson's staining. Western blot and quantitative reverse transcription-polymerase chain reaction were used to determine protein and m RNA expression levels.RESULTS: Serum levels of alanine aminotransferase, aminotransferase, total bilirubin, hyaluronic acid, laminin, and procollagen type Ⅲ were markedly decreased, whereas the levels of serum albumin were increased by u PA gene modified BMSCs treatment. Histopathology revealed that chronic CCl4-treatment resulted in significant fibrosis while u PA gene modified BMSCs treatment significantly reversed fibrosis. By quantitatively analysing the fibrosis area of liver tissue using Masson staining in different groups of animals, we found that model animals with CCl4-induced liver fibrosis had the largest fibrotic area(16.69% ± 1.30%), while fibrotic area was significantly decreased by BMSCs treatment(12.38% ± 2.27%) and was further reduced by u PA-BMSCs treatment(8.31% ± 1.21%). Both protein and m RNA expression of β-catenin, Wnt4 and Wnt5 a was down-regulated in liver tissues following u PA gene modified BMSCs treatment when compared with the model animals.CONCLUSION: Transplantation of u PA gene modified BMSCs suppressed liver fibrosis and ameliorated liver function and may be a new approach to treating liver fibrosis. Furthermore, treatment with u PA gene modified BMSCs also resulted in a decrease in expression of molecules of the Wnt signaling pathway. 展开更多
关键词 bone marrow-derived mesenchymal stemcells liver fibrosis UROKINASE PLASMINOGEN activator Wnt signaling PATHWAY
下载PDF
Electrophysiological characteristics of cardiomyocyte-like cells from rat bone marrow derived mesenchymal stem cells by four inductors 被引量:4
8
作者 LIU Bo-wu LU An-lin HOU Jing HUANG Wei HOU Hong HOU Zhao-lei DA Jing AI Shi-yi 《Chinese Medical Journal》 SCIE CAS CSCD 2013年第18期3528-3533,共6页
Background Bone marrow derived mesenchymal stem cel induced by different inductors individually or collectively. In s (BMdMSCs) can differentiate into cardiomyocyte-like cells this study, by inducing BMdMSCs with p5... Background Bone marrow derived mesenchymal stem cel induced by different inductors individually or collectively. In s (BMdMSCs) can differentiate into cardiomyocyte-like cells this study, by inducing BMdMSCs with p53 inhibitor (p-fifty three inhibitor-alpha, PFT-a), 5-azacytidine (5-AZA), angiotensin-II (Ang-II) and bone morphogenic protein-2 (BMP-2) we compared the influences of four inductors on the differentiation of rat BMdMSCs into caridomyocyte like-cells. Methods BMdMSCs were collected from the bone marrow of Sprague Dawley rats and after the fourth generation, the purified cells were divided into five groups: 5-AZA (10 μmol/L), Ang-II (0.1 μmol/L), PFT-α (20 μmol/L), BMP-2 (10μg/L) and control. The purity of the BMdMSCs and the cardiac differentiation rates were obtained by flow cytometry. The expressions of cTnT in the BMdMSCs after four weeks of induction were detected by immunofluorescence and the expressions of cTnl and Cx43 detected by Western blotting. The green fluorescent levels reflecting intracellular calcium transient function were determined by laser scanning confocal microscopy. The total potassium current levels of cells were measured on patch clamp. Results All inductors affected to a different degree the differentiation of BMdMSCs into cardiomyocyte-like cells and the expressions of cTnT, cTnl and Cx43 suggesting that the combination of inductors could be an improved method for cardiac regenerative medicine. In addition, the total potassium current level and calcium transient in PFT-a cardiomyocyte-like cells were higher than other groups. Conclusions The cardiac differentiation of BMdMSCs induced by PFT-α, 5-AZA, Ang-II and BMP-2 has been improved at different levels. PFT-a has an advantage of differentiation rate and electrophysiological function over other inductors. 展开更多
关键词 bone marrow mesenchymal stem cells DIFFERENTIATION CARDIOMYOCYTE electrophysiological characteristics
原文传递
Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis 被引量:13
9
作者 Xiao-Huang Tu Jing-Xiang Song +5 位作者 Xiao-Jun Xue Xian-Wei Guo Yun-Xia Ma Zhi-Yao Chen Zhong-Dong Zou Lie Wang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第18期2270-2279,共10页
AIM:To investigate the role and potential mechanisms of bone marrow mesenchymal stem cells(MSCs) in severe acute peritonitis(SAP).METHODS:Pancreatic acinar cells from Sprague Dawley rats were randomly divided into thr... AIM:To investigate the role and potential mechanisms of bone marrow mesenchymal stem cells(MSCs) in severe acute peritonitis(SAP).METHODS:Pancreatic acinar cells from Sprague Dawley rats were randomly divided into three groups:nonsodium deoxycholate(SDOC) group(non-SODC group),SDOC group,and a MSCs intervention group(i.e.,a co-culture system of MSCs and pancreatic acinar cells + SDOC).The cell survival rate,the concentration of malonaldehyde(MDA),the density of superoxide dismutase(SOD),serum amylase(AMS) secretion rate and lactate dehydrogenase(LDH) leakage rate were detected at various time points.In a separate study,Sprague Dawley rats were randomly divided into either an SAP group or an SAP + MSCs group.Serum AMS,MDA and SOD,interleukin(IL)-6,IL-10,and tumor necrosis factor(TNF)-α levels,intestinal mucosa injury scores and proliferating cells of small intestinal mucosa were measured at various time points after injecting either MSCs or saline into rats.In both studies,the protective effect of MSCs was evaluated.RESULTS:In vitro,The cell survival rate of pancreatic acinar cells and the density of SOD were significantly reduced,and the concentration of MDA,AMS secretion rate and LDH leakage rate were significantly increased in the SDOC group compared with the MSCs intervention group and the Non-SDOC group at each time point.In vivo,Serum AMS,IL-6,TNF-α and MAD level in the SAP + MSCs group were lower than the SAP group;however serum IL-10 level was higher than the SAP group.Serum SOD level was higher than the SAP group at each time point,whereas a significant betweengroup difference in SOD level was only noted after 24 h.Intestinal mucosa injury scores was significantly reduced and the proliferating cells of small intestinal mucosa became obvious after injecting MSCs.CONCLUSION:MSCs can effectively relieve injury to pancreatic acinar cells and small intestinal epithelium,promote the proliferation of enteric epithelium and repair of the mucosa,attenuate systemic inflammation in rats with SAP. 展开更多
关键词 骨髓间充质干细胞 重症急性胰腺炎 大鼠模型 间质干细胞 超氧化物歧化酶 血清淀粉酶 生理盐水 细胞存活率
下载PDF
Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model 被引量:10
10
作者 Elham H.A.Ali Omar A.Ahmed-Farid Amany A.E.Osman 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期1990-1999,共10页
Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety ... Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against Na NO2 induced hypoxic brain injury. Rats were divided into control group(treated for 3 or 6 weeks), hypoxic(HP) group(subcutaneous injection of 35 mg/kg Na NO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2 w R and N-3 w R(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2 w SC and N-3 w SC(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of Na NO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters(norepinephrine, dopamine, serotonin), energy substances(adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers(malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against Na NO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain. 展开更多
关键词 nerve regeneration HYPOXIA bone marrow-derived mesenchymal stem cells sodium nitrite monoamine neurotransmitter cell energy neural regeneration
下载PDF
Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease 被引量:8
11
作者 Ping Zhang Gangyong Zhao +1 位作者 Xianjiang Kang Likai Su 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期245-250,共6页
In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in s... In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus. 展开更多
关键词 Alzheimer's disease bone marrow-derived mesenchymal stem cells brain-derived neurotrophic factor lateral ventricle electrotransfection neural regeneration
下载PDF
Brain-derived neurotrophic factor genes transfect rat bone marrow mesenchymal stem cells based on cationic polymer vector 被引量:2
12
作者 Zunsheng Zhang Kun Zan Yonghai Liu Xia Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第1期26-30,共5页
BACKGROUND: Gene therapy is an effective expression of genes within target cells after transferring exogenous target genes. Both vector selection and transfection method are important factors for gene transfection. A... BACKGROUND: Gene therapy is an effective expression of genes within target cells after transferring exogenous target genes. Both vector selection and transfection method are important factors for gene transfection. An ideal gene vector is required for a high transfusion of target gene and an exact introduction of target gene into specific target cells so as to express gene products. OBJECTIVE: To study the expression of mRNA and protein after transfecting rat bone marrow mesenchymal stem cells (BMSCs) with brain-derived neurotrophic factor (BDNF) genes based on cationic polymer vector. DESIGN, TIME AND SETTING: A randomized, controlled in vitro study using gene engineering, performed at the Neurobiology Laboratory, Xuzhou Medical College between October 2007 and April 2008. MATERIALS: PcDNA3.1 BDNF was obtained from Youbiai Biotechnological Company, Beijing and cationic polymer vector used was the SofastTM gene transfection reagent that was made by Taiyangma Biotechnological Co., Ltd., Xiamen. METHODS: BMSCs extracted from six Sprague Dawley (SD) rats aged 1 month were isolated and cultured in vitro. Third passage BMSCs were inoculated on a 6-well culture plate at the density of 1×106 cells/L. At about 80% confluence, BMSCs were transfected with PcDNA3.1-BDNF (2 μg) combined with SofastTM gene transfection reagent (6 μg) (BDNF group) or with PcDNA3.1 (2 μg) combined with SofastTM gene transfection reagent (6 μg) (blank vector group). Cells that were not transfected with any reagents but still cultured under primary culture conditions were used as a non-transfection group. MAIN OUTCOME MEASURES: Enzyme linked immunosorbent assay was used to measure time efficiency of BMSC-secreted BDNF protein. Twenty-four hours after gene transfection, RT-PCR was used to detect expression of BDNF mRNA in the BMSCs. Immunohistochemistry was used to determine expression of BDNF protein in the BMSCs. RESULTS: BDNF protein expression was detected at day 1 after gene transfection, rapidly increased after 5–9 days and gradually increased after 11–15 days in the BDNF group; moreover, BDNF protein expression was higher than that in the non-transfection group and the blank vector group at different time points (P 〈 0.01). Additionally, BDNF mRNA expression in the BDNF group was higher than that in the blank vector group and the non-transfection group (P 〈 0.01). CONCLUSION: A cationic polymer vector can effectively mediate the BDNF gene to transfect BMSCs; genetically modified BMSCs can express BDNF protein effectively for a long term. 展开更多
关键词 bone marrow mesenchymal stem cells brain-derived neurotrophic factor gene transfection
下载PDF
Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo microcomputed tomographic and histologic e 被引量:3
13
作者 Khalid Al-Hezaimi Sundar Ramalingam +6 位作者 Mansour Al-Askar Aws S ArRejaie Nasser Nooh Fawad Jawad Abdullah Aldahmash Muhammad Atteya Cun-Yu Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第1期7-15,共9页
The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects ... The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo pCT. At the lOth week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups I and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adiunct BMSC therapy. 展开更多
关键词 bone marrow-derived mesenchymal stem collagen membrane critical size defect guided bone regeneration tricalciumphosphate
下载PDF
Distribution and differentiation of bone marrow-derived mesenchymal stem cells in vivo after intraperitoneal and tail vein injection into rats in the recovery phase of stroke: Which path is better? 被引量:2
14
作者 Yan Liu Yingdong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期965-969,共5页
BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can ... BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can accurately deliver cells to the infarct area, but requires a stereotactic device and causes secondary trauma; vascular injection is easy and better for host neurological deficit recovery, but can cause thrombosis. OBJECTIVE: To compare the therapeutic potential of adult bone marrow-derived mesenchymal stem cells (BMSCs) transplantation by intraperitoneal versus intravenous administration to cerebral ischemic rats. DESIGN, TIME AND SE'B'ING: A randomized controlled animal experiment was performed at the Cell Room and Pathology Laboratory, Brain Hospital Affiliated to Nanjing Medical University from November 2007 to September 2008. MATERIALS: BMSCs were derived from 20 healthy Sprague-Dawley rats aged 4-6 weeks. METHODS: Forty-five adult middle cerebral artery occlusion (MCAO) rats were randomly divided into control, intravenous and intraperitoneal injection groups, with 15 rats in each group. At 21 days after modeling, rats in the control group received 1 mL of 0.01 mol/L phosphate buffered saline via tail vein injection and each experimental rat received 4 x 106 BMSCs labeled by bromodeoxyuridine (BrdU) via intravenous or intraperitoneal injection. MAIN OUTCOME MEASURES: Angiogenin expression and survival of transplanted cells were measured by immunohistochemical staining of brain tissue in infarction hemisphere at 7, 14 or 21 days after BMSC transplantation. Co-expression of BrdU/microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein was observed by double-labeled immunofluorescence of cerebral cortex. Evaluation of nerve function adhesion-removal test was performed on the 14 or 21 days after BMSCs treatment. using the neurological injury severity score and the 1st and 21st day before and after MCAO, and at 3, 7 RESULTS: Angiogenin-positive new vessels were distributed in the bilateral striatum, hippocampus and cerebral cortex of each group of rats at each time point, most markedly in the intravenous injection group. There were significantly more BrdU-positive cells in the intravenous injection group than in the intraperitoneal injection group (P 〈 0.01). Co-expression of BrdU/ microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein were almost only seen in the intravenous group by fluorescence microscopy. After transplantation, BMSCs significantly restored nerve function in rats, particularly in the intravenous injection group. CONCLUSION: BMSCs were able to enter brain tissue via the tail vein or peritoneal injection and improve neurological function by promoting the regeneration of nerves and blood vessels in vivo, more effectively after intravenous than intraperitoneal injection. 展开更多
关键词 bone marrow-derived mesenchymal stem cells brain ischemia functional recovery neural differentiation ANGIOGENESIS neural regeneration
下载PDF
Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease 被引量:3
15
作者 Xiaoling Qin Wang Han Zhigang Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2673-2680,共8页
A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and wer... A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro. 展开更多
关键词 bone marrow-derived mesenchymal stem cell Parkinson's disease striatal extract induceddifferentiation nerve cell glial fibrillary acidic protein NESTIN neuron-specific enolase neural stemcell regeneration neural regeneration
下载PDF
Nanofibrous Scaffold Containing Osteoblast-Derived Extracellular Matrix for the Proliferation of Bone Marrow Mesenchymal Stem Cells 被引量:1
16
作者 吴云亮 秦春萍 +3 位作者 余哲泡 王先流 张彦中 娄向新 《Journal of Donghua University(English Edition)》 EI CAS 2017年第6期756-760,共5页
Extracellular matrix( ECM) plays a prominent role in establishing and maintaining an appropriate microenvironment for tissue regeneration. The aims of this study were to construct a tissue engineered scaffold by recon... Extracellular matrix( ECM) plays a prominent role in establishing and maintaining an appropriate microenvironment for tissue regeneration. The aims of this study were to construct a tissue engineered scaffold by reconstituting osteoblast cell-derived ECM( O-ECM) on the electrospun nanofibrous scaffold,and further to evaluate its subsequent application for promoting the proliferation of bone marrow mesenchymal stem cells( BMSCs). To engineer a biomimetic scaffold, calvarial osteoblasts and electrospun poly-llactic acid( PLLA) nanofibers were prepared and subjected to decellularize for O-ECM deposition. To evaluate and characterize the O-ECM/PLLA scaffold, the morphology was examined and several specific mark proteins of osteoblasts matrix were evaluated.Furthermore,the cell counting kit-8( CCK-8) assay was used to detect the proliferation of the BMSCs cultivated on the O-ECM/PLLA scaffold. The results indicated O-ECM/PLLA scaffold was loaded with Collagen I, Fibronectin, and Laminin, as the composition of the marrow ECM. After decellularization,O-ECM deposition was observed in O-ECM/PLLA scaffold. Moreover,the O-ECM/PLLA scaffold could significantly enhance the proliferation of BMSCs,suggesting better cytocompatibility compared to the other groups tested. Taken together,a biomimetic scaffold based on the joint use of O-ECM and PLLA biomaterials,which represents a promising approach to bone tissue engineering, facilitates the expansion of BMSCs in vitro. 展开更多
关键词 tissue engineering extracellular matrix(ECM) electrospun nanofibers bone marrow mesenchymal stem cells(BMSCs)
下载PDF
Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells:Advances and challenges
17
作者 Li-Yi Huang Xin Sun +3 位作者 Hong-Xia Pan Lu Wang Cheng-Qi He Quan Wei 《World Journal of Stem Cells》 SCIE 2023年第5期385-399,共15页
Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the tr... Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the treatment of SCI.Recently,bone marrow-derived mesenchymal stem cells(BMMSCs)have been considered to be the most promising source for cellular therapies following SCI.The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI.In this work,we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects:Neuroprotection,axon sprouting and/or regeneration,myelin regeneration,inhibitory microenvironments,glial scar formation,immunomodulation,and angiogenesis.Additionally,we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models. 展开更多
关键词 Spinal cord injury bone marrow derived mesenchymal stem cells Neuroprotection AXON MYELIN Inhibitory microenvironment
下载PDF
Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients
18
作者 FRANCISCO RAÚL BORZONE MARÍA BELÉN GIORELLO +6 位作者 LEANDRO MARCELO MARTINEZ MARÍA CECILIA SANMARTIN LEONARDO FELDMAN FEDERICO DIMASE EMILIO BATAGELJ GUSTAVO YANNARELLI NORMA ALEJANDRA CHASSEING 《Oncology Research》 SCIE 2023年第3期361-374,共14页
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel... Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients. 展开更多
关键词 mesenchymal stem/stromal cells Senescence Breast cancer bone marrow Pre-metastatic niche bone metastasis
下载PDF
A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells(BMSCs)
19
作者 WENQI CHEN XIAOYANG CHU +6 位作者 YANG ZENG YOUSHENG YAN YIPENG WANG DONGLAN SUN DONGLIANG ZHANG JING ZHANG KAI YANG 《BIOCELL》 SCIE 2023年第7期1561-1569,共9页
Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study... Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS. 展开更多
关键词 bone marrow mesenchymal stem cells ROR2 WNT5A Osteogenic differentiation SPHINGOMYELIN
下载PDF
Communication between bone marrow mesenchymal stem cells and multiple myeloma cells:Impact on disease progression
20
作者 Daniel García-Sánchez Alberto González-González +2 位作者 Ana Alfonso-Fernández Mónica Del Dujo-Gutiérrez Flor M Pérez-Campo 《World Journal of Stem Cells》 SCIE 2023年第5期421-437,共17页
Multiple myeloma(MM)is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow(BM).The interaction between MM cells and the BM microenvironment,a... Multiple myeloma(MM)is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow(BM).The interaction between MM cells and the BM microenvironment,and specifically BM mesenchymal stem cells(BM-MSCs),has a key role in the pathophysiology of this disease.Multiple data support the idea that BM-MSCs not only enhance the proliferation and survival of MM cells but are also involved in the resistance of MM cells to certain drugs,aiding the progression of this hematological tumor.The relation of MM cells with the resident BM-MSCs is a two-way interaction.MM modulate the behavior of BM-MSCs altering their expression profile,proliferation rate,osteogenic potential,and expression of senescence markers.In turn,modified BM-MSCs can produce a set of cytokines that would modulate the BM microenvironment to favor disease progression.The interaction between MM cells and BM-MSCs can be mediated by the secretion of a variety of soluble factors and extracellular vesicles carrying microRNAs,long non-coding RNAs or other molecules.However,the communication between these two types of cells could also involve a direct physical interaction through adhesion molecules or tunneling nanotubes.Thus,understanding the way this communication works and developing strategies to interfere in the process,would preclude the expansion of the MM cells and might offer alternative treatments for this incurable disease. 展开更多
关键词 Multiple myeloma mesenchymal stem cells bone marrow microenvironment Soluble factors Extra-cellular vesicles cells adhesion molecules Tunnellingnanotubes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部