BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ...BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ischemic stroke. OBJECTIVE: To test whether acupuncture provides protection for injured cerebral myelin, based on quantitative data from cerebral ischemia-reperfusion rats, and to compare the effects of early and late acupuncture on serum myelin basic protein (MBP) content and remyelination of the ischemic internal capsule.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed at the Neurobiological Laboratory, Sichuan University from March 2005 to March 2006. MATERIALS: "Hua Tuo" Brand filiform needles were produced by the Medical Instrument Factory of Suzhou, China.METHODS: A total of 52 adult, healthy, male, Sprague Dawley rats were randomly assigned to four groups: control (n = 4), model (n = 16), early acupuncture (n = 16), and late acupuncture (n = 16). The focal cerebral ischemia-reperfusion model was established by middle cerebral artery occlusion in the right hemisphere using the modified thread embolism method in the latter three groups. Early and late acupuncture groups underwent acupuncture after ischemia for 30 minutes and 2 hours using the Xingnaokaiqiao needling method, respectively. Acupoints were "Neiguarf' (PC 6) and "Sanyinjiao" (SP 6) on the bilateral sides, as well as "Shuigou' (DU 26) and "Baihui" (DU 20) with stimulation for 1 minute at each acupoint. Acupuncture at all acupoints was performed two or three times while the needle was retained, once per day. No special handling was administered to the control clroup.MAIN OUTCOME MEASURES: For each group, remyelination of the internal capsule was observed by Pal-Weigert's myelin staining and serum MBP content was detected using enzyme-linked immunosorbent assay method on days 1,3, 5, and 7 following ischemia-reperfusion injury.RESULTS: Compared with the control group, massive demyelination of the internal capsule occurred, and serum MBP content increased in the model group (P 〈 0.05). Compared with the model group, the extent of demyelination in the internal capsule was less distinct and serum MBP content was significantly less in the early and late acupuncture group (P 〈 0.01 ). Compared with the late acupuncture group, serum MBP content reached a peak later and the peak value was less in the early acupuncture group. CONCLUSION: Results suggest that acupuncture exerts a protective effect on injured cerebral myelin in ischemia-reperfusion rats by reducing serum MBP content and promoting remyelination. The study also suggests that the effect of early acupuncture is superior to late acupuncture.展开更多
BACKGROUND: HOW to control the effect of oxygen-derived free radicals on development of cerebral injury and cerebral edema is a key factor for treating cerebral ischemia-reperfusion injury. OBJECTIVE: To observe and...BACKGROUND: HOW to control the effect of oxygen-derived free radicals on development of cerebral injury and cerebral edema is a key factor for treating cerebral ischemia-reperfusion injury. OBJECTIVE: To observe and compare the protective effects, synergistic action and mechanisms of ultrashortwave (USW) and radix salviae miltiorrhizae (RSM) on the focal cerebral ischemia-reperfusion injuries in rats. DESIGN: Randomized controlled animal study SEI-FING: Department of Rehabilitation Medicine, First Hospital affiliated to China Medical University MATERIALS: A total of 160 healthy Wistar rats of both genders and aged 18-20 weeks weighing 250-300 g of clean grade were selected in this study. 5 mL/ampoule RSM injection fluid was produced by the First Pharmaceutical Corporation of Shanghai (batch number: 011019, 0.01 mug). The USW therapeutic device was produced by Shanghai Electronic Device Factory with the frequency of 40.68 MHz and the maximal export power of 40 W. The first channel of power after modulation was 11 W. METHODS: The experiment was carried out in the Rehabilitation Medicine Department of the First Hospital affiliated to China Medical University from May 2002 to January 2003. Focal ischemia-reperfusion model was established in rats by reversible right middle cerebral artery occlusion with filament. Right cerebral ischemia was for 2 hours and then with 24 hours reperfusion. The scores of neurological deficits were evaluated by 0 to 4 scales. After surgery, 64 successful rats models were divided into four groups according to digital table: control group, USW group, RSM group and RSM + USW group with 16 cases in each group. Rats in control group were intraperitoneally injected with the same volume of saline (0.1 mL/g); rats in USW group were given small dosage of USW on head for 10 minutes at 6 hours after reperfusion; rats in RSM group were intraperitoneally injected with 0.01 mL/g RSM solution at 30 minutes before reperfusion; rats in RSM + USW group were intraperitoneally injected with 0.01 mL/g RSM parenteral solution at 30 minutes before reperfusion and given small dosage of USW on head for 10 minutes once at 6 hours after reperfusion; sixteen rats in sham operation group did not receive any treatment. All 80 rats were taken brains at 24 hours after reperfusion to measure wet and dry weights to calculate water content: Cerebral water content (%) = (1-dry/wet weight) × 100%. Superoxide dismutase (SOD) activity was measured by hydroxylamine method and malondialdehyde (MDA) content was measured by TBA photometric method. MAIN OUTCOME MEASURES : Cerebral water content, SOD activity and MDA content RESULTS: All 160 rats except 80 failing in modeling were involved in the final analysis. (① The cerebral water content of left hemisphere made no significant difference (P 〉 0.05). The cerebral water content of right hemisphere in the control group and the three treatment groups was obviously higher than that of the sham operation group [(81.26±0.77)%, (79.74±0.68)%, (79.76±0.81)%, (79.61±0.79)%, (77.43±0.61)%, P 〈 0.05]. The cerebral water content of right hemisphere in the three treatment groups was obviously lower than that of the control group (P〈 0.05). There was no significant difference among the three treatment groups (P 〉 0.05). ② Compared with the control group, SOD activity (right) of the control group decreased obviously (P 〈 0.05), while MDA content increased obviously (P 〈 0.05). SOD activity in the three therapeutic groups increased obviously, while MDA content decreased obviously (P 〈 0.05); there was no significant difference among the three treatment groups (P 〉 0.05). CONCLUSION: ① USW and RSM therapy have neuroprotective effects against focal cerebral ischemia-reperfusion injuries by means of decreasing cerebral water content and MDA and increasing the activity of SOD. ② Synergistic action was not observed between these two therapeutic methods.展开更多
Objective To study the protective effect of agrimony extracts from different extracting methods on cerebral ischemia-reperfusion injury in rats, in order to optimize the extraction scheme of agrimony.Methods Male rats...Objective To study the protective effect of agrimony extracts from different extracting methods on cerebral ischemia-reperfusion injury in rats, in order to optimize the extraction scheme of agrimony.Methods Male rats were randomly assigned into seven groups: 1. Sham-operated group, 2. Untreated MCAO group (MCAO), 3. Petroleum ether extract of Agrimonia pilosa treated MCAO group (PEA), 4. Ethyl acetate extract of Agrimonia pilosa treated MCAO group (EAEA), 5. Ethanol extract of Agrimonia pilosa treated MCAO group (EEA), 6. Water extract of Agrimonia pilosa treated MCAO group (WEA), 7. Nimodipine treated MCAO group (NP). Intragastrical drug administration (i.g) was performed at 0 and 6 hours after MCAO.Neurological function tests were performed after reperfusion for 24 hours, then the brain was removed for the evaluations of the cerebral infarction volume (percentage of total brain volume) by immunohistochemistry,histological changes (hematoxylin-eosin staining), Na+/K+-ATPase, Ca2+-ATPase (modified method of Svoboda and Mosinger), mRNA expression of Tumor suppressor gene (P53) and hot shock protein (HSP70)(quantitative real-time PCR).Results The neurological function of MCAO group had significantly higher scores than the sham group (P<0.01). The WEA group showed a significantly lower neurological score than the MCAO group (P<0.05),indicating the protective effect of WEA on neurological deficits. The mean infarction volumes of WEA (13.5±6.6%, F=4.75, P<0.01), EEA (19.90±6.90%, F=5.23, P<0.01), PEA (20.40±5.30%, F=4.68,P<0.01) and EAEA (22.50±10.50%, F=6.25, P<0.05) group were all significantly smaller than that of MCAO group (29.40±6.50%). HE staining demonstrated that, compared to the treated groups, the infarcted cerebral tissue of MCAO group had more swelling neural cells, lighter stained nucleus, fewer and irregularly distributed neurons. The activity of Na+/K+-ATPase and Ca2+-ATPase reduced in the MCAO group (3.67±0.48 U/mg,1.28±0.26 U/mg, respectively), and were significantly higher in WEA group (7.56±0.85 U/mg, F=12.65,P=0.010; 3.59±0.22 U/mg, F=8.32, P=0.041, respectively). The MCAO group showed significantly elevated P53 and HSP70 mRNA expressions compared to the sham group (P<0.01, P<0.05). P53 mRNA expressions in Agrimony extracts treated groups were significantly lower than that of the MCAO group (all P<0.01), with the WEA group showing the greatest difference from MCAO group. The HSP70 mRNA level of the treated groups were not significantly different from that of the MCAO group.Conclusions Treatment using water extracts of agrimony can promote the best functional and metabolic recovery for rat model of cerebral ischemia-reperfusion injury, which maybe relate with the upregulation of energy metabolism in nerve cells after MCAO.展开更多
Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusio...Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusion of a major cerebral artery, usually the mid- dle cerebral artery (MCA). Experimental focal cerebral ischemia models have been employed to mimic human stroke (Durukan and Tatlisumak, 2007). Rodent models of focal cerebral ischemia that do not require craniotomy have been developed using intraluminal suture occlusion of the MCA (MCA occlusion, MCAO) (Rosamond et al., 2008). Furthermore, mouse MCAO models have been wide- ly used and extended to genetic studies of cell death or recovery mechanisms (Liu and McCullough, 2011). Genetically engineered mouse stroke models are particularly useful for evaluation of isch- emic pathophysiology and the design of new prophylactic, neuro- protective, and therapeutic agents and interventions (Armstead et al., 2010). During the past two decades, MCAO surgical techniques have been developed that do not reveal surgical techniques for mouse MCAO model engineering. Therefore, we compared MCAO surgical methods in rats and mice.展开更多
Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (G...Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (GC) could reduce myocardial ischemia-reperfusion (IR) injury in rat heart. Methods: Twelve rats were randomized to IR group and GC group, then the hearts were isolated and perfused with Langendorff apparatus. Before cardioplegia, the perfusion was stopped abruptly in IR group while slowly with 5-minute in GC group. The hearts were subjected to 30-minute ischemia and 60-minute reperfusion. The left ventricular develop pressure (LVDP) and systolic pressure (LVSP), the maximal rate of the increase and decrease of left ventricular pressure (+dp/dt<sub>max</sub>, ﹣dp/dt<sub>max</sub>) were measured by polygraph system at different time points. The recovery of the variables was expressed as the ratio of these values at individual time point after reperfusion to the baseline respectively. Results: The recovery of LVDP after reperfusion was better than that in IR group (P = 0.034). No significant difference in the recovery of LVSP, +dp/dtmax and ﹣dp/dt<sub>max</sub> between groups was observed. Conclusions: Gradual clamping could improve the recovery of LVDP after IR, suggesting that gradual clamping could reduce myocardial IR injury.展开更多
BACKGROUND: Previous researches have proved that aminoguanidin can cure cerebral ischemic injury remarkably as a selective induced nitricoxide synthase (iNOS) inhibitor. However, whether nonselective NOS inhibitor ...BACKGROUND: Previous researches have proved that aminoguanidin can cure cerebral ischemic injury remarkably as a selective induced nitricoxide synthase (iNOS) inhibitor. However, whether nonselective NOS inhibitor could protect cerebral ischemic injury or not is unclear. OBJECTIVE: To investigate the effects of NG-nitro-L-arginine (L-NA), a nonselective nitricoxide synthase (NOS) inhibitor, on cerebral ischemic injury of rats and the possible mechanism.DESIGN: Randomized controlled study.SETTING : Pharmacological Department of Medical Academy of Science of Hebei Province.MATERIALS: A total of 56 male healthy SD rats, of grade Ⅱ, weighting 250-290 g, were provided by the Experimental Animal Center of Hebei Province (certification: 04036). METHODS: The experiment was completed in the Pharmacological Department of Medical Academy of Science of Hebei Province from March 2005 to January 2006.① Grouping: Rats were randomly divided into 3 groups: sham operation group (n=8), model group (n=24) and L-NA group (n=24).② Modeling: Middle cerebral artery (MCA) was established on rats in model group and L-NA group with intreluminal line occlusion methods, and rats in sham operation group were separated their external carotid arteries without occlusion of internal carotid artery. ③ Intervention study: Rats in model group and L-NA group were injected intreperitoneally with 10 mL/kg and 20 mg/kg L-NA at 2, 6 and 12 hours respectively after ischemia twice a day for 3 consecutive days. ④ Rats were sacrificed on the third day for measuring volume of cerebral infarction with image analysis and swelling degrees and activities of mitochondria with electron microscope. Effect of L-NA on ultrastructural changes of neurons in cortex was observed after ischemia. MAIN OUTCOME MEASURES:① Volume of cerebral infarction; ②Swelling degrees, contents of nitric oxide (NO) and malondialdehyde (MDA) and activities of adenosine triphosphatase (ATPase), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mitochondria;③ Ultrastructural changes of mitochondria in brain tissue after cerebral ischemia. RESULTS: ① At 12 hour after ischemia, volume of cerebral infarction in L-NA group was lower than that in model group (P 〈 0.01). ② Content of NO in mitochondria in L-NA group was decreased as compared with that in model group at 2, 6 and 12 hours after ischemia (P 〈 0.05); swelling degree of mitochondria in brain tissue was relieved in L-NA group at 12 hour after ischemia, and content of MDA was decreased (P 〈 0.05); mitochondrial activity in L-NA group was increased at 12 hour after ischemia, and activities of ATPase, SOD and GSH-Px in mitochondria were increased (P 〈 0.05).③ Degrees of mitochondrial injury in brain tissue were relieved in L-NA group at 12 hour after ischemia as compared with those in model group and L-NA group at 2 and 6 hours after ischemia. CONCLUSION : ①L-NA can beneficially inhibit NO production, but not protect brain against damage in ischemia acute stage. ②L-NA might have protective effects on cerebral injury through inhibiting the production of oxygen free radical, increasing antioxidation, ameliorating energy metabolism, beneficially improving the integrity of form and function of mitochondria in brain tissue during postischemia in rats.展开更多
MicroRNAs are a family of small, genome-encoded endogenous RNAs that are transcribed but are not translated into proteins. They serve essential roles in virtually every aspect of brain function, including neurogenesis...MicroRNAs are a family of small, genome-encoded endogenous RNAs that are transcribed but are not translated into proteins. They serve essential roles in virtually every aspect of brain function, including neurogenesis, neural development, and cellular responses leading to changes in synaptic plasticity. They are also implicated in neurodegeneration and neurological disorders, in responses to hypoxia and ischemia, and in ischemic tolerance induced by ischemic preconditioning. In recent developments, miRNA expres- sion profiling has been examined in stroke, and these studies indicate that miRNAs have emerged as key mediators in ischemic stroke biology. Both increased and decreased miRNA levels may be needed either as prevention or treatment of stroke. Novel approaches are being developed to get miRNA related therapeu- tics into the brain across an intact blood-brain barrier, including chemical modification, use of targeting molecules and methods to disrupt the blood-brain barrier.展开更多
Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a...Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reper- fusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after ocdusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascu- lar endothelial growth factor.展开更多
BACKGROUND: There is a controversy over the degree of liver and biliary injury caused by the period of secondary warm ischemia. A liver autotransplantation model was adopted because it excludes the effects of infectio...BACKGROUND: There is a controversy over the degree of liver and biliary injury caused by the period of secondary warm ischemia. A liver autotransplantation model was adopted because it excludes the effects of infection and immunological rejection on bile duct injury. This study was undertaken to assess biliary tract injury caused by relative warm ischemia (secondary warm ischemia time in the biliary tract) and reperfusion. METHODS: One hundred and two rats were randomly divided into 5 groups: group I (control); groups 11 to V, relative warm ischemia times of 0 minute, 30 minutes, I hour and 2 hours. In addition to the levels of serum alkaline phosphatase, and total bilirubin, pathomorphology assessment and TUNEL assay were performed to evaluate biliary tract damage. RESULTS: Under the conditions that there were no significant differences in warm ischemia time, cold perfusion time and anhepatic phase, group comparisons showed statistically significant differences. The least injury occurred in group H (portal vein and hepatic artery reperfused simultaneously) but the most severe injury occurred in group V (biliary tract relative warm ischemia time 2 hours). CONCLUSIONS: Relative warm ischemia is one of the factors that result in bile duct injury, and the relationship between relative warm ischemia time the bile injury degree is time-dependent. Simultaneous arterial and portal reperfusion is the best choice to avoid the bile duct injury caused by relative warm ischemia. (Hepatobiliary Pancreat Dis Int 2009; 8: 247-254)展开更多
Cardiac ischemia/reperfusion(I/R) injury is a critical condition,often associated with high morbidity and mortality.The cardioprotective effect of grape seed proanthocyanidin extracts(GSPE) against oxidant injury ...Cardiac ischemia/reperfusion(I/R) injury is a critical condition,often associated with high morbidity and mortality.The cardioprotective effect of grape seed proanthocyanidin extracts(GSPE) against oxidant injury during I/R has been described in previous studies.However,the underlying molecular mechanisms have not been fully elucidated.This study investigated the effect of GSPE on reperfusion arrhythmias especially ventricular tachycardia(VT) and ventricular fibrillation(VF),the lactic acid accumulation and the ultrastructure of ischemic cardiomyocytes as well as the global changes of mitochondria proteins in in vivo rat heart model against I/R injury.GSPE significantly reduced the incidence of VF and VT,lessened the lactic acid accumulation and attenuated the ultrastructure damage.Twenty differential proteins related to cardiac protection were revealed by isobaric tag for relative and absolute quantitation(iTRAQ) profiling.These proteins were mainly involved in energy metabolism.Besides,monoamine oxidase A(MAOA) was also identified.The differential expression of several proteins was validated by Western blot.Our study offered important information on the mechanism of GSPE treatment in ischemic heart disease.展开更多
文摘BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ischemic stroke. OBJECTIVE: To test whether acupuncture provides protection for injured cerebral myelin, based on quantitative data from cerebral ischemia-reperfusion rats, and to compare the effects of early and late acupuncture on serum myelin basic protein (MBP) content and remyelination of the ischemic internal capsule.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed at the Neurobiological Laboratory, Sichuan University from March 2005 to March 2006. MATERIALS: "Hua Tuo" Brand filiform needles were produced by the Medical Instrument Factory of Suzhou, China.METHODS: A total of 52 adult, healthy, male, Sprague Dawley rats were randomly assigned to four groups: control (n = 4), model (n = 16), early acupuncture (n = 16), and late acupuncture (n = 16). The focal cerebral ischemia-reperfusion model was established by middle cerebral artery occlusion in the right hemisphere using the modified thread embolism method in the latter three groups. Early and late acupuncture groups underwent acupuncture after ischemia for 30 minutes and 2 hours using the Xingnaokaiqiao needling method, respectively. Acupoints were "Neiguarf' (PC 6) and "Sanyinjiao" (SP 6) on the bilateral sides, as well as "Shuigou' (DU 26) and "Baihui" (DU 20) with stimulation for 1 minute at each acupoint. Acupuncture at all acupoints was performed two or three times while the needle was retained, once per day. No special handling was administered to the control clroup.MAIN OUTCOME MEASURES: For each group, remyelination of the internal capsule was observed by Pal-Weigert's myelin staining and serum MBP content was detected using enzyme-linked immunosorbent assay method on days 1,3, 5, and 7 following ischemia-reperfusion injury.RESULTS: Compared with the control group, massive demyelination of the internal capsule occurred, and serum MBP content increased in the model group (P 〈 0.05). Compared with the model group, the extent of demyelination in the internal capsule was less distinct and serum MBP content was significantly less in the early and late acupuncture group (P 〈 0.01 ). Compared with the late acupuncture group, serum MBP content reached a peak later and the peak value was less in the early acupuncture group. CONCLUSION: Results suggest that acupuncture exerts a protective effect on injured cerebral myelin in ischemia-reperfusion rats by reducing serum MBP content and promoting remyelination. The study also suggests that the effect of early acupuncture is superior to late acupuncture.
基金Liaoning Province Social Development Fund Sustentation Item, No. 99225003
文摘BACKGROUND: HOW to control the effect of oxygen-derived free radicals on development of cerebral injury and cerebral edema is a key factor for treating cerebral ischemia-reperfusion injury. OBJECTIVE: To observe and compare the protective effects, synergistic action and mechanisms of ultrashortwave (USW) and radix salviae miltiorrhizae (RSM) on the focal cerebral ischemia-reperfusion injuries in rats. DESIGN: Randomized controlled animal study SEI-FING: Department of Rehabilitation Medicine, First Hospital affiliated to China Medical University MATERIALS: A total of 160 healthy Wistar rats of both genders and aged 18-20 weeks weighing 250-300 g of clean grade were selected in this study. 5 mL/ampoule RSM injection fluid was produced by the First Pharmaceutical Corporation of Shanghai (batch number: 011019, 0.01 mug). The USW therapeutic device was produced by Shanghai Electronic Device Factory with the frequency of 40.68 MHz and the maximal export power of 40 W. The first channel of power after modulation was 11 W. METHODS: The experiment was carried out in the Rehabilitation Medicine Department of the First Hospital affiliated to China Medical University from May 2002 to January 2003. Focal ischemia-reperfusion model was established in rats by reversible right middle cerebral artery occlusion with filament. Right cerebral ischemia was for 2 hours and then with 24 hours reperfusion. The scores of neurological deficits were evaluated by 0 to 4 scales. After surgery, 64 successful rats models were divided into four groups according to digital table: control group, USW group, RSM group and RSM + USW group with 16 cases in each group. Rats in control group were intraperitoneally injected with the same volume of saline (0.1 mL/g); rats in USW group were given small dosage of USW on head for 10 minutes at 6 hours after reperfusion; rats in RSM group were intraperitoneally injected with 0.01 mL/g RSM solution at 30 minutes before reperfusion; rats in RSM + USW group were intraperitoneally injected with 0.01 mL/g RSM parenteral solution at 30 minutes before reperfusion and given small dosage of USW on head for 10 minutes once at 6 hours after reperfusion; sixteen rats in sham operation group did not receive any treatment. All 80 rats were taken brains at 24 hours after reperfusion to measure wet and dry weights to calculate water content: Cerebral water content (%) = (1-dry/wet weight) × 100%. Superoxide dismutase (SOD) activity was measured by hydroxylamine method and malondialdehyde (MDA) content was measured by TBA photometric method. MAIN OUTCOME MEASURES : Cerebral water content, SOD activity and MDA content RESULTS: All 160 rats except 80 failing in modeling were involved in the final analysis. (① The cerebral water content of left hemisphere made no significant difference (P 〉 0.05). The cerebral water content of right hemisphere in the control group and the three treatment groups was obviously higher than that of the sham operation group [(81.26±0.77)%, (79.74±0.68)%, (79.76±0.81)%, (79.61±0.79)%, (77.43±0.61)%, P 〈 0.05]. The cerebral water content of right hemisphere in the three treatment groups was obviously lower than that of the control group (P〈 0.05). There was no significant difference among the three treatment groups (P 〉 0.05). ② Compared with the control group, SOD activity (right) of the control group decreased obviously (P 〈 0.05), while MDA content increased obviously (P 〈 0.05). SOD activity in the three therapeutic groups increased obviously, while MDA content decreased obviously (P 〈 0.05); there was no significant difference among the three treatment groups (P 〉 0.05). CONCLUSION: ① USW and RSM therapy have neuroprotective effects against focal cerebral ischemia-reperfusion injuries by means of decreasing cerebral water content and MDA and increasing the activity of SOD. ② Synergistic action was not observed between these two therapeutic methods.
基金Fund supported by National Science Foundation of China (NSFC) 81503491,81374053, 81630105.
文摘Objective To study the protective effect of agrimony extracts from different extracting methods on cerebral ischemia-reperfusion injury in rats, in order to optimize the extraction scheme of agrimony.Methods Male rats were randomly assigned into seven groups: 1. Sham-operated group, 2. Untreated MCAO group (MCAO), 3. Petroleum ether extract of Agrimonia pilosa treated MCAO group (PEA), 4. Ethyl acetate extract of Agrimonia pilosa treated MCAO group (EAEA), 5. Ethanol extract of Agrimonia pilosa treated MCAO group (EEA), 6. Water extract of Agrimonia pilosa treated MCAO group (WEA), 7. Nimodipine treated MCAO group (NP). Intragastrical drug administration (i.g) was performed at 0 and 6 hours after MCAO.Neurological function tests were performed after reperfusion for 24 hours, then the brain was removed for the evaluations of the cerebral infarction volume (percentage of total brain volume) by immunohistochemistry,histological changes (hematoxylin-eosin staining), Na+/K+-ATPase, Ca2+-ATPase (modified method of Svoboda and Mosinger), mRNA expression of Tumor suppressor gene (P53) and hot shock protein (HSP70)(quantitative real-time PCR).Results The neurological function of MCAO group had significantly higher scores than the sham group (P<0.01). The WEA group showed a significantly lower neurological score than the MCAO group (P<0.05),indicating the protective effect of WEA on neurological deficits. The mean infarction volumes of WEA (13.5±6.6%, F=4.75, P<0.01), EEA (19.90±6.90%, F=5.23, P<0.01), PEA (20.40±5.30%, F=4.68,P<0.01) and EAEA (22.50±10.50%, F=6.25, P<0.05) group were all significantly smaller than that of MCAO group (29.40±6.50%). HE staining demonstrated that, compared to the treated groups, the infarcted cerebral tissue of MCAO group had more swelling neural cells, lighter stained nucleus, fewer and irregularly distributed neurons. The activity of Na+/K+-ATPase and Ca2+-ATPase reduced in the MCAO group (3.67±0.48 U/mg,1.28±0.26 U/mg, respectively), and were significantly higher in WEA group (7.56±0.85 U/mg, F=12.65,P=0.010; 3.59±0.22 U/mg, F=8.32, P=0.041, respectively). The MCAO group showed significantly elevated P53 and HSP70 mRNA expressions compared to the sham group (P<0.01, P<0.05). P53 mRNA expressions in Agrimony extracts treated groups were significantly lower than that of the MCAO group (all P<0.01), with the WEA group showing the greatest difference from MCAO group. The HSP70 mRNA level of the treated groups were not significantly different from that of the MCAO group.Conclusions Treatment using water extracts of agrimony can promote the best functional and metabolic recovery for rat model of cerebral ischemia-reperfusion injury, which maybe relate with the upregulation of energy metabolism in nerve cells after MCAO.
基金supported by the 2013 Inje University Research Grant
文摘Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusion of a major cerebral artery, usually the mid- dle cerebral artery (MCA). Experimental focal cerebral ischemia models have been employed to mimic human stroke (Durukan and Tatlisumak, 2007). Rodent models of focal cerebral ischemia that do not require craniotomy have been developed using intraluminal suture occlusion of the MCA (MCA occlusion, MCAO) (Rosamond et al., 2008). Furthermore, mouse MCAO models have been wide- ly used and extended to genetic studies of cell death or recovery mechanisms (Liu and McCullough, 2011). Genetically engineered mouse stroke models are particularly useful for evaluation of isch- emic pathophysiology and the design of new prophylactic, neuro- protective, and therapeutic agents and interventions (Armstead et al., 2010). During the past two decades, MCAO surgical techniques have been developed that do not reveal surgical techniques for mouse MCAO model engineering. Therefore, we compared MCAO surgical methods in rats and mice.
文摘Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (GC) could reduce myocardial ischemia-reperfusion (IR) injury in rat heart. Methods: Twelve rats were randomized to IR group and GC group, then the hearts were isolated and perfused with Langendorff apparatus. Before cardioplegia, the perfusion was stopped abruptly in IR group while slowly with 5-minute in GC group. The hearts were subjected to 30-minute ischemia and 60-minute reperfusion. The left ventricular develop pressure (LVDP) and systolic pressure (LVSP), the maximal rate of the increase and decrease of left ventricular pressure (+dp/dt<sub>max</sub>, ﹣dp/dt<sub>max</sub>) were measured by polygraph system at different time points. The recovery of the variables was expressed as the ratio of these values at individual time point after reperfusion to the baseline respectively. Results: The recovery of LVDP after reperfusion was better than that in IR group (P = 0.034). No significant difference in the recovery of LVSP, +dp/dtmax and ﹣dp/dt<sub>max</sub> between groups was observed. Conclusions: Gradual clamping could improve the recovery of LVDP after IR, suggesting that gradual clamping could reduce myocardial IR injury.
基金the Natural Science Foundation of Hebei Province, No. C2005000840
文摘BACKGROUND: Previous researches have proved that aminoguanidin can cure cerebral ischemic injury remarkably as a selective induced nitricoxide synthase (iNOS) inhibitor. However, whether nonselective NOS inhibitor could protect cerebral ischemic injury or not is unclear. OBJECTIVE: To investigate the effects of NG-nitro-L-arginine (L-NA), a nonselective nitricoxide synthase (NOS) inhibitor, on cerebral ischemic injury of rats and the possible mechanism.DESIGN: Randomized controlled study.SETTING : Pharmacological Department of Medical Academy of Science of Hebei Province.MATERIALS: A total of 56 male healthy SD rats, of grade Ⅱ, weighting 250-290 g, were provided by the Experimental Animal Center of Hebei Province (certification: 04036). METHODS: The experiment was completed in the Pharmacological Department of Medical Academy of Science of Hebei Province from March 2005 to January 2006.① Grouping: Rats were randomly divided into 3 groups: sham operation group (n=8), model group (n=24) and L-NA group (n=24).② Modeling: Middle cerebral artery (MCA) was established on rats in model group and L-NA group with intreluminal line occlusion methods, and rats in sham operation group were separated their external carotid arteries without occlusion of internal carotid artery. ③ Intervention study: Rats in model group and L-NA group were injected intreperitoneally with 10 mL/kg and 20 mg/kg L-NA at 2, 6 and 12 hours respectively after ischemia twice a day for 3 consecutive days. ④ Rats were sacrificed on the third day for measuring volume of cerebral infarction with image analysis and swelling degrees and activities of mitochondria with electron microscope. Effect of L-NA on ultrastructural changes of neurons in cortex was observed after ischemia. MAIN OUTCOME MEASURES:① Volume of cerebral infarction; ②Swelling degrees, contents of nitric oxide (NO) and malondialdehyde (MDA) and activities of adenosine triphosphatase (ATPase), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mitochondria;③ Ultrastructural changes of mitochondria in brain tissue after cerebral ischemia. RESULTS: ① At 12 hour after ischemia, volume of cerebral infarction in L-NA group was lower than that in model group (P 〈 0.01). ② Content of NO in mitochondria in L-NA group was decreased as compared with that in model group at 2, 6 and 12 hours after ischemia (P 〈 0.05); swelling degree of mitochondria in brain tissue was relieved in L-NA group at 12 hour after ischemia, and content of MDA was decreased (P 〈 0.05); mitochondrial activity in L-NA group was increased at 12 hour after ischemia, and activities of ATPase, SOD and GSH-Px in mitochondria were increased (P 〈 0.05).③ Degrees of mitochondrial injury in brain tissue were relieved in L-NA group at 12 hour after ischemia as compared with those in model group and L-NA group at 2 and 6 hours after ischemia. CONCLUSION : ①L-NA can beneficially inhibit NO production, but not protect brain against damage in ischemia acute stage. ②L-NA might have protective effects on cerebral injury through inhibiting the production of oxygen free radical, increasing antioxidation, ameliorating energy metabolism, beneficially improving the integrity of form and function of mitochondria in brain tissue during postischemia in rats.
文摘MicroRNAs are a family of small, genome-encoded endogenous RNAs that are transcribed but are not translated into proteins. They serve essential roles in virtually every aspect of brain function, including neurogenesis, neural development, and cellular responses leading to changes in synaptic plasticity. They are also implicated in neurodegeneration and neurological disorders, in responses to hypoxia and ischemia, and in ischemic tolerance induced by ischemic preconditioning. In recent developments, miRNA expres- sion profiling has been examined in stroke, and these studies indicate that miRNAs have emerged as key mediators in ischemic stroke biology. Both increased and decreased miRNA levels may be needed either as prevention or treatment of stroke. Novel approaches are being developed to get miRNA related therapeu- tics into the brain across an intact blood-brain barrier, including chemical modification, use of targeting molecules and methods to disrupt the blood-brain barrier.
文摘Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reper- fusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after ocdusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascu- lar endothelial growth factor.
文摘BACKGROUND: There is a controversy over the degree of liver and biliary injury caused by the period of secondary warm ischemia. A liver autotransplantation model was adopted because it excludes the effects of infection and immunological rejection on bile duct injury. This study was undertaken to assess biliary tract injury caused by relative warm ischemia (secondary warm ischemia time in the biliary tract) and reperfusion. METHODS: One hundred and two rats were randomly divided into 5 groups: group I (control); groups 11 to V, relative warm ischemia times of 0 minute, 30 minutes, I hour and 2 hours. In addition to the levels of serum alkaline phosphatase, and total bilirubin, pathomorphology assessment and TUNEL assay were performed to evaluate biliary tract damage. RESULTS: Under the conditions that there were no significant differences in warm ischemia time, cold perfusion time and anhepatic phase, group comparisons showed statistically significant differences. The least injury occurred in group H (portal vein and hepatic artery reperfused simultaneously) but the most severe injury occurred in group V (biliary tract relative warm ischemia time 2 hours). CONCLUSIONS: Relative warm ischemia is one of the factors that result in bile duct injury, and the relationship between relative warm ischemia time the bile injury degree is time-dependent. Simultaneous arterial and portal reperfusion is the best choice to avoid the bile duct injury caused by relative warm ischemia. (Hepatobiliary Pancreat Dis Int 2009; 8: 247-254)
基金Supported by the National Natural Science Foundation of China(Nos.30700884,30873145)the Distinguished Middle-aged and Young Scientist Encourage and Reward Foundation of Shandong Province,China(No.BS2009SW015)
文摘Cardiac ischemia/reperfusion(I/R) injury is a critical condition,often associated with high morbidity and mortality.The cardioprotective effect of grape seed proanthocyanidin extracts(GSPE) against oxidant injury during I/R has been described in previous studies.However,the underlying molecular mechanisms have not been fully elucidated.This study investigated the effect of GSPE on reperfusion arrhythmias especially ventricular tachycardia(VT) and ventricular fibrillation(VF),the lactic acid accumulation and the ultrastructure of ischemic cardiomyocytes as well as the global changes of mitochondria proteins in in vivo rat heart model against I/R injury.GSPE significantly reduced the incidence of VF and VT,lessened the lactic acid accumulation and attenuated the ultrastructure damage.Twenty differential proteins related to cardiac protection were revealed by isobaric tag for relative and absolute quantitation(iTRAQ) profiling.These proteins were mainly involved in energy metabolism.Besides,monoamine oxidase A(MAOA) was also identified.The differential expression of several proteins was validated by Western blot.Our study offered important information on the mechanism of GSPE treatment in ischemic heart disease.