Rate splitting multiple access(RSMA)has shown great potentials for the next generation communication systems.In this work,we consider a two-user system in hybrid satellite terrestrial network(HSTN)where one of them is...Rate splitting multiple access(RSMA)has shown great potentials for the next generation communication systems.In this work,we consider a two-user system in hybrid satellite terrestrial network(HSTN)where one of them is heavily shadowed and the other uses cooperative RSMA to improve the transmission quality.The non-convex weighted sum rate(WSR)problem formulated based on this model is usually optimized by computational burdened weighted minimum mean square error(WMMSE)algorithm.We propose to apply deep unfolding to solve the optimization problem,which maps WMMSE iterations into a layer-wise network and could achieve better performance within limited iterations.We also incorporate momentum accelerated projection gradient descent(PGD)algorithm to circumvent the complicated operations in WMMSE that are not amenable for unfolding and mapping.The momentum and step size in deep unfolding network are selected as trainable parameters for training.As shown in the simulation results,deep unfolding scheme has WSR and convergence speed advantages over original WMMSE algorithm.展开更多
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p...As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.展开更多
The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were exe...The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were executed. The technique "split Hopkinson pressure bar"(SHPB) was used. The impact velocity was 10 m/s with corresponding strain rate of 50 s-1. The compressive behavior of materials was measured in terms of stress-strain curves, dynamic compressive strength, dynamic increase factor(DIF) and critical strain at a maximum stress. The data obtained from test indicate that both ascending and descending portions of stress-stain curves are affected by moisture content. However, the effect is noted to be more significant in ascending portion of the stress-strain curves. Dynamic compressive strength is higher at lower moisture content and weaker at higher moisture content.Furthermore, under nearly saturated condition, an increase in compressive strength can be found. The effect of moisture content on the average DIF of concrete is not significant. The critical compressive strain of concrete does not change with moisture content.展开更多
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro...During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.展开更多
基金sponsored by National Natural Science Foundation of China (No. 61871422, No.62027801)
文摘Rate splitting multiple access(RSMA)has shown great potentials for the next generation communication systems.In this work,we consider a two-user system in hybrid satellite terrestrial network(HSTN)where one of them is heavily shadowed and the other uses cooperative RSMA to improve the transmission quality.The non-convex weighted sum rate(WSR)problem formulated based on this model is usually optimized by computational burdened weighted minimum mean square error(WMMSE)algorithm.We propose to apply deep unfolding to solve the optimization problem,which maps WMMSE iterations into a layer-wise network and could achieve better performance within limited iterations.We also incorporate momentum accelerated projection gradient descent(PGD)algorithm to circumvent the complicated operations in WMMSE that are not amenable for unfolding and mapping.The momentum and step size in deep unfolding network are selected as trainable parameters for training.As shown in the simulation results,deep unfolding scheme has WSR and convergence speed advantages over original WMMSE algorithm.
文摘As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.
基金Project(50979032)supported by the National Natural Science Foundation of China
文摘The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were executed. The technique "split Hopkinson pressure bar"(SHPB) was used. The impact velocity was 10 m/s with corresponding strain rate of 50 s-1. The compressive behavior of materials was measured in terms of stress-strain curves, dynamic compressive strength, dynamic increase factor(DIF) and critical strain at a maximum stress. The data obtained from test indicate that both ascending and descending portions of stress-stain curves are affected by moisture content. However, the effect is noted to be more significant in ascending portion of the stress-strain curves. Dynamic compressive strength is higher at lower moisture content and weaker at higher moisture content.Furthermore, under nearly saturated condition, an increase in compressive strength can be found. The effect of moisture content on the average DIF of concrete is not significant. The critical compressive strain of concrete does not change with moisture content.
基金supported by the National High Technology Research and Development Program of China(2014AA041504)the National Natural Science Foundation of China(51605161)
文摘During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.