The grain-filling processes at different grain positions of curved-panicle type Longjing 29 and semi-erect-panicle type Longjing 31, two major rice (Oryza sativa L.) cultivars in Heilongjiang Province, were simulate...The grain-filling processes at different grain positions of curved-panicle type Longjing 29 and semi-erect-panicle type Longjing 31, two major rice (Oryza sativa L.) cultivars in Heilongjiang Province, were simulated by Richards growth eq-uation, so as to determine the reason of great differences in head rice rate of different rice cul- tivar among different years and to improve the processing quality of different rice cul- tivar through cultivation regulation measures. The results showed that the yield of Longjing 29 was slightly higher than that of Longjing 31, but the head rice rate of Longjing 29 was significantly lower than that of Longjing 31. More grains on sec- ondary rachis branch resulted in lower plumpness, lower seed-setting rate and lower milled rice rate of Longjing 29. The grain-filling rates at the six grain positions of Longjing 31 reached the peaks simultaneously, so the synchronous grain filling char- acteristic of Longjing 31 was more obvious. The grain-filling rate on the primary rachis branch of Longjing 31 was higher, and it reached the peak in the middle peri- od. Although the grain-filling rate on the secondary rachis branch of Longjing 31 was lower, it early reached the peak. In addition, the middle and late filling period of Longjing 31 was longer, resulting in plump and compact grains on the secondary rachis branch of Longjing 31. After the grain-filling rate on the primary rachis branch was decreased, the grain-filling rate on the secondary rachis branch of Longjing 29 started to be increased greatly, characterized by asynchronous grain filling. In the early grain filling stage, the grains on the upper, middle and basal secondary rachis branch were all significantly suppressed by those on the primary rachis branch of Longjing 29. The initial growth potential and maximum filling rate of grains on the secondary rachis branch of Longjing 29 were all lower. The grain-filling rate on the secondary rachis branch of Longjing 29 late reached the peak. Even worse, the mid- dle and late filling period of Longjing 29 was shorter. Therefore, the grains of Longjing 29 had poor plumpness. Synchronous grain filling led to small difference in grain quality within the same panicle, and this was also the reason for stable head rice rate of Longjing 31 among different years. In contrast, asynchronous grain filling led to great difference in grain quality within the same panicle of Longjing 29. In addi- tion, low temperature often occurred during the fast filling of grains on the secondary rachis branch of Longjing 29. Thus, the head rice rate of Longjing 29 was decreased.展开更多
A modified heading rate active disturbance rejection controller(ADRC)for miniature unmanned helicopters is presented to improve the transient performance and adaptability of working conditions.First,a tail-locking mat...A modified heading rate active disturbance rejection controller(ADRC)for miniature unmanned helicopters is presented to improve the transient performance and adaptability of working conditions.First,a tail-locking mathematical model is introduced,and the amplification factor is defined.Second,a standard ADRC controller is presented.Because the amplification factor plays an important role in both parts of the content and is primarily influenced by the main rotor speed,an online forgetting factor recursive least square algorithm is used to identify it,and the identification result is condensed into a function of the main rotor speed,adapting to various working conditions.This function is also included in the proposed ADRC controller to supplement the standard scheme.Finally,experiments were conducted on a small electric helicopter.A reduction of approximately 40%in the transient time(compared with an off-the-shelf PID controller)was achieved in the experiment.The comparative results show that the proposed ADRC scheme outperforms the classic PID and standard ADRC schemes in terms of transient performance and adaptability to working conditions.展开更多
基金Supported by National Key Technology Research and Development Program(2012BAD04B01-02)Science Foundation of Heilongjiang Province for Outstanding Young Scientists(JG05-22)+2 种基金Key Science and Technology Program of Heilongjiang Province(GA09B102-3)Youth Foundation for Agricultural Science and Technology Innovation in Heilongjiang Province in 2012Heilongjiang Postdoctoral Sustentation Fund(LBH-Z10038)~~
文摘The grain-filling processes at different grain positions of curved-panicle type Longjing 29 and semi-erect-panicle type Longjing 31, two major rice (Oryza sativa L.) cultivars in Heilongjiang Province, were simulated by Richards growth eq-uation, so as to determine the reason of great differences in head rice rate of different rice cul- tivar among different years and to improve the processing quality of different rice cul- tivar through cultivation regulation measures. The results showed that the yield of Longjing 29 was slightly higher than that of Longjing 31, but the head rice rate of Longjing 29 was significantly lower than that of Longjing 31. More grains on sec- ondary rachis branch resulted in lower plumpness, lower seed-setting rate and lower milled rice rate of Longjing 29. The grain-filling rates at the six grain positions of Longjing 31 reached the peaks simultaneously, so the synchronous grain filling char- acteristic of Longjing 31 was more obvious. The grain-filling rate on the primary rachis branch of Longjing 31 was higher, and it reached the peak in the middle peri- od. Although the grain-filling rate on the secondary rachis branch of Longjing 31 was lower, it early reached the peak. In addition, the middle and late filling period of Longjing 31 was longer, resulting in plump and compact grains on the secondary rachis branch of Longjing 31. After the grain-filling rate on the primary rachis branch was decreased, the grain-filling rate on the secondary rachis branch of Longjing 29 started to be increased greatly, characterized by asynchronous grain filling. In the early grain filling stage, the grains on the upper, middle and basal secondary rachis branch were all significantly suppressed by those on the primary rachis branch of Longjing 29. The initial growth potential and maximum filling rate of grains on the secondary rachis branch of Longjing 29 were all lower. The grain-filling rate on the secondary rachis branch of Longjing 29 late reached the peak. Even worse, the mid- dle and late filling period of Longjing 29 was shorter. Therefore, the grains of Longjing 29 had poor plumpness. Synchronous grain filling led to small difference in grain quality within the same panicle, and this was also the reason for stable head rice rate of Longjing 31 among different years. In contrast, asynchronous grain filling led to great difference in grain quality within the same panicle of Longjing 29. In addi- tion, low temperature often occurred during the fast filling of grains on the secondary rachis branch of Longjing 29. Thus, the head rice rate of Longjing 29 was decreased.
文摘A modified heading rate active disturbance rejection controller(ADRC)for miniature unmanned helicopters is presented to improve the transient performance and adaptability of working conditions.First,a tail-locking mathematical model is introduced,and the amplification factor is defined.Second,a standard ADRC controller is presented.Because the amplification factor plays an important role in both parts of the content and is primarily influenced by the main rotor speed,an online forgetting factor recursive least square algorithm is used to identify it,and the identification result is condensed into a function of the main rotor speed,adapting to various working conditions.This function is also included in the proposed ADRC controller to supplement the standard scheme.Finally,experiments were conducted on a small electric helicopter.A reduction of approximately 40%in the transient time(compared with an off-the-shelf PID controller)was achieved in the experiment.The comparative results show that the proposed ADRC scheme outperforms the classic PID and standard ADRC schemes in terms of transient performance and adaptability to working conditions.