期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
Comparison of microwave- and thermal-assisted rock fragmentation methods at different temperatures and loading rates
1
作者 Wei Yao Shuai Wang +2 位作者 Bangbiao Wu Ying Xu Kaiwen Xia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期799-819,共21页
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F... Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests. 展开更多
关键词 Fangshan granite Dynamic experiments Microwave irradiation Thermal treatment loading rate FRAGMENTATION
下载PDF
Experimental research on influence mechanism of loading rates on rock pressure stimulated currents 被引量:2
2
作者 Min Li Zhijun Lin +5 位作者 Shiliang Shi Deming Wang Yi Lu He Li Qing Ye Xiaonan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期243-250,共8页
The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under th... The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs. 展开更多
关键词 Pressure stimulated current loading rate Influence mechanism Peak current
下载PDF
Mixed-mode fracture behavior in deep shale reservoirs under different loading rates and temperatures 被引量:1
3
作者 Yu Suo Yan-Jie Zhao +2 位作者 Xiao-Fei Fu Wen-Yuan He Zhe-Jun Pan 《Petroleum Science》 SCIE EI CSCD 2023年第5期3037-3047,共11页
In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,str... In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,strong heterogeneity,and strong anisotropy.In the process of multi-cluster fracturing of horizontal wells,the whole deformation process and destruction modes are significantly influenced by loading rates.In this investigation,the servo press was used to carry out semi-circular bend(SCB)mixedmode fracture experiments in deep shales(130,160,190℃)with prefabricated fractures under different loading rates(0.02,0.05,0.1,0.2 mm/min).The fracture propagation process was monitored using acoustic emission.The deformation characteristics,displacementeload curve,and acoustic emission parameters of shale under different loading rates were studied during the mixed-mode fracture propagation.Our results showed that during the deformation and fracture of the specimen,the acoustic emission energy and charge significantly increased near the stress peak,showing at this point the most intense acoustic emission activity.With the increase in loading rate,the fracture peak load of the deep shale specimen also increased.However,the maximum displacement decreased to different extents.With the increase in temperature,the effective fracture toughness of the deep shale gradually decreased.Also,the maximum displacement decreased.Under different loading rates,the deformation of the prefabricated cracks showed a nonlinear slow growthelinear growth trend.The slope of the linear growth stage increased with the increase in loading rate.In addition,as the loading rate increased,an increase in tension failure and a decrease in shear failure were observed.Moreover,the control chart showing the relationship between tension and the shear failure under different temperatures and loading rates was determined. 展开更多
关键词 Deep shale Mixed-mode fracture toughness loading rate Deformation characteristics
下载PDF
Investigates of substrate mingling ratio and organic loading rate of KOH pretreated corn stover and pig manure in batch and semi-continuous system:Anaerobic digestion performance and microbial characteristics
4
作者 Chenyang Zhu Ruoran Qu +2 位作者 Xiujin Li Xiaoyu Zuo Hairong Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期114-123,共10页
The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were invest... The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were investigated for pig manure(PM)and pretreated/untreated corn stover in batch and semicontinuous anaerobic digestion(AD)system.The results showed that SMR and pretreatment affected co-digestion performance.The maximum cumulative methane yield of 428.5 ml·g^(-1)(based on volatile solids(VS))was obtained for PCP13,which was 35.7%and 40.0%higher than that of CSU and PM.In the first 5 days,the maximum methane yield improvement rate was 378.1%for PCP13.The daily methane yield per gram VS of PCP13 was 11.4%-18.5%higher than that of PC_(U)13.Clostridium_sensu_stricto_1,DMER64,and Bacteroides and Methanosaeta,Methanobacterium,and Methanospirillum had higher relative abundance at the genus level.Therefore,SMR and OLR are important factor affecting the AD process,and OLR can affect methane production through volatile fatty acids. 展开更多
关键词 Substrate mingling ratio Organic loading rate CO-DIGESTION Corn stover Pig manure Microbial community
下载PDF
Effects of loading rate on root pullout performance of two plants in the eastern Loess Plateau,China
5
作者 ZHANG Chaobo LI Rong +1 位作者 JIANG Jing YANG Qihong 《Journal of Arid Land》 SCIE CSCD 2023年第9期1129-1142,共14页
Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)... Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)and soil factors(soil types,soil moisture,soil bulk densities,etc.).However,the effects of loading rates on root pullout performance are not well studied.To explore the mechanical interactions under different loading rates,we conducted pullout tests on Medicago sativa L.and Hippophae rhamnoides L.roots under five loading rates,i.e.,5,50,100,150,and 200 mm/min.In addition,tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties.Results showed that two root failure modes,slippage and breakage,were observed during root pullout tests.All M.sativa roots were pulled out,while 72.2%of H.rhamnoides roots were broken.The maximum fracture diameter and fracture root length of H.rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate,respectively.Root displacement values were 4.63%(±0.43%)and 8.91%(±0.52%)of the total root length for M.sativa and H.rhamnoides,respectively.The values of maximum pullout force were 14.6(±0.7)and 17.7(±1.8)N under 100 mm/min for M.sativa and H.rhamnoides,respectively.Values of the maximum pullout strength for M.sativa and H.rhamnoides were 38.38(±5.48)MPa under 150 mm/min and 12.47(±1.43)MPa under 100 mm/min,respectively.Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species.Values of the maximum root pullout energy for M.sativa and H.rhamnoides were 87.83(±21.55)mm•N under 100 mm/min and 173.53(±38.53)mm•N under 200 mm/min,respectively.Root pullout force was significantly related to root diameter(P<0.01).Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included(P<0.01),and vice versa.Except for the failure mode and peak pullout force,other pullout parameters,including root pullout strength,root displacement,root-soil friction coefficient,and root pullout energy were not significantly affected by loading rates(P>0.05).Root pullout strength was greater than root tensile strength for the two species.The results suggested that there was no need to deliberately control loading rate in root pullout tests in the semi-arid soil,and root pullout force and pullout strength could be better parameters for root reinforcement model compared with root tensile strength as root pullout force and pullout strength could more realistically reflect the working state of roots in the semi-arid soil. 展开更多
关键词 plant roots soil reinforcement loading rate root pullout properties root-soil interaction loess area
下载PDF
Effects of aspect ratio and loading rate on room-temperature mechanical properties of Cu-based bulk metallic glasses 被引量:1
6
作者 蔡安辉 刘咏 +6 位作者 吴宏 丁大伟 安伟科 周果君 罗云 彭勇宜 李小松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2617-2632,共16页
Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×... Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed. 展开更多
关键词 Cu-based bulk metallic glasses aspect ratio loading rate PLASTICITY STRENGTH
下载PDF
Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining 被引量:28
7
作者 GAO Ming-zhong ZHANG Jian-guo +3 位作者 LI Sheng-wei WANG Man WANG Ying-wei CUI Peng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3013-3024,共12页
The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitativel... The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater. 展开更多
关键词 fractal dimension loading rate impact load coal crack
下载PDF
Effect of loading rate on fracture behaviors of shale under mode I loading 被引量:11
8
作者 XIE Qin LI Sheng-xiang +2 位作者 LIU Xi-ling GONG Feng-qiang LI Xi-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3118-3132,共15页
In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split ... In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split Hopkinson pressure bar(SHPB)setup and INSTRON1346 servo-testing machine under pure mode I loading conditions.During the test,the crack propagation process was recorded by high-speed(HS)camera,and the acoustic emission(AE)signal generated by the fracture was collected by acoustic emission(AE)system.At the same time,crack propagation gauge(CPG)was used to measure the crack propagation velocity of the specimen.The results show that the crack propagation velocity and fracture toughness of shale have a positive correlation with the loading rate.The relationship among the crack propagation velocity,the fracture toughness and the loading rate is established under the static loading condition.In addition,the characteristics of AE signals with different loading rates are analyzed.It is found that the AE signals generated by microcrack growth decrease with the increase of loading rates.Meanwhile,the turning point of cumulative counting moves forward as the loading rate increases,which shows that the AE signal generated by shale fracture at low loading rate mainly comes from the initiation and propagation of microcracks,while at high loading rate it mainly comes from the formation of macro large-scale cracks.The fracture mechanism that causes shale fracture toughness and crack propagation velocity to vary with loading rate is also discussed based on the analysis results of AE signals. 展开更多
关键词 SHALE loading rate cracked straight through Brazilian disc fracture toughness acoustic emission crack propagation velocity
下载PDF
Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples 被引量:17
9
作者 MAQing TAN Yun-liang +3 位作者 LIU Xue-sheng ZHAO Zeng-hui FAN De-yuan PUREV Lkhamsuren 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3207-3222,共16页
The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the def... The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the deformation and failure mechanism of of coal-rock composite structures.In this research,laboratory tests and numerical simulation of uniaxial compressions of coal-rock composite samples were carried out with five different loading rates.The test results show that strength,deformation,acoustic emission(AE)and energy evolution of coal-rock composite sample all have obvious loading rate effects.The uniaxial compressive strength and elastic modulus increase with the increase of loading rate.And with the increase of loading rate,the AE energy at the peak strength of coal-rock composites increases first,then decreases,and then increases.With the increase of loading rate,the AE cumulative count first decreases and then increases.And the total absorption energy and dissipation energy of coal-rock composite samples show non-linear increasing trends,while release elastic strain energy increases first and then decreases.The laboratory experiments conducted on coal-rock composite samples were simulated numerically using the particle flow code(PFC).With careful selection of suitable material constitutive models for coal and rock,and accurate estimation and calibration of mechanical parameters of coal-rock composite sample,it was possible to obtain a good agreement between the laboratory experimental and numerical results.This research can provide references for understanding failure of underground coalrock composite structure by using energy related measuring methods. 展开更多
关键词 coal-rock composite samples uniaxial compression loading rate acoustic emission energy evolution
下载PDF
Effects of water intrusion and loading rate on mechanical properties of and crack propagation in coal–rock combinations 被引量:10
10
作者 陈田 姚强岭 +4 位作者 卫斐 种照辉 周健 王常彬 李静 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期423-431,共9页
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock... Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation. 展开更多
关键词 water intrusion loading rate mechanical properties coal-rock combination crack propagation stress threshold
下载PDF
Effect of loading rates on the characteristics of thermal damage for mudstone under different temperatures 被引量:8
11
作者 Mao Rongrong Mao Xianbiao +1 位作者 Zhang Lianying Liu Ruixue 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期797-801,共5页
The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temper... The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage. 展开更多
关键词 MUDSTONE High temperature loading rate Characteristics of thermal damage
下载PDF
Experimental investigation on influence of loading rate on rockburst in deep circular tunnel under true-triaxial stress condition 被引量:8
12
作者 SI Xue-feng HUANG Lin-qi +2 位作者 GONG Feng-qiang LIU Xi-ling LI Xi-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2914-2929,共16页
To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specime... To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specimens with d50 mm circular perforated holes,and the failure process of hole sidewall was monitored and recorded in real-time by the microcamera.The loading rates were 0.02,0.10,and 0.50 MPa/s.The test results show that the rockburst process of hole sidewall experienced calm period,pellet ejection period,rock fragment exfoliation period and finally formed the V-shaped notch.The rockburst has a time lag and vertical stress is high when the rockburst occurs.The vertical stress at the initial failure of the hole sidewall increases with loading rate.During the same period after initial failure,the rockburst severity of hole sidewalls increased significantly with increasing loading rate.When the vertical stress is constant and maintains a high stress level,the rockburst of hole sidewall under low loading rate is more serious than that under high loading rate.With increasing loading rate,the quality of rock fragments produced by the rockburst decreases,and the fractal dimension of rock fragments increases. 展开更多
关键词 ROCKBURST loading rate deep circular tunnel true-triaxial test V-shaped notch
下载PDF
Characterization of Loading Rate Effects on the Interactions Between Crack Growth and Inclusions in Cementitious Material 被引量:3
13
作者 Shuai Zhou Xiaoying Zhuang 《Computers, Materials & Continua》 SCIE EI 2018年第12期417-446,共30页
The microcapsule-enabled cementitious material is an appealing building material and it has been attracting increasing research interest.By considering microcapsules as dissimilar inclusions in the material,this paper... The microcapsule-enabled cementitious material is an appealing building material and it has been attracting increasing research interest.By considering microcapsules as dissimilar inclusions in the material,this paper employs the discrete element method(DEM)to study the effects of loading rates on the fracturing behavior of cementitious specimens containing the inclusion and the crack.The numerical model was first developed and validated based on experimental results.It is then used to systematically study the initiation,the propagation and the coalescence of cracks in inclusion-enabled cementitious materials.The study reveals that the crack propagation speed,the first crack initiation stress,the coalescence stress,the compressive strength and the ultimate strain increase with the loading rate.The initiation position,the propagation direction,the cracking length and the type of the initiated cracks are influenced by the loading rates.Two new crack coalescence patterns are observed.It is easier to cause the coalescence between the circular void and a propagating crack at a slow loading rate than at a fast loading rate. 展开更多
关键词 MICROCAPSULE loading rate cracking processes DEM compressive loading
下载PDF
Dynamic tensile strength and failure mechanisms of thermally treated sandstone under dry and water-saturated conditions 被引量:8
14
作者 Pin WANG Tu-bing YIN Bi-wei HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2217-2238,共22页
To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston... To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed. 展开更多
关键词 SANDSTONE dynamic tensile strength hydro-thermal coupling damage loading rate dependence failure mechanism
下载PDF
Effects of time lag and stress loading rate on permeability in low permeability reservoirs 被引量:4
15
作者 WANG Rui YUE Xiang-an +2 位作者 ZHANG Wei TAN Xi-qun ZHANG Yan 《Mining Science and Technology》 EI CAS 2009年第4期526-530,共5页
In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on ... In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates. 展开更多
关键词 low permeability stress sensitivity time lag effect stress loading rate
下载PDF
Application of subsurface wastewater infiltration system to on-site treatment of domestic sewage under high hydraulic loading rate 被引量:7
16
作者 Ying-hua Li Hai-bo Li +2 位作者 Xin-yang Xu Xuan Gong Yong-chun Zhou 《Water Science and Engineering》 EI CAS CSCD 2015年第1期49-54,共6页
In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results sh... In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS. 展开更多
关键词 Domestic sewage Subsurface wastewater infiltration system Intermittent operation mode Hydraulic loading rate Pollutant removal rate
下载PDF
Effect of loading rate on fracture characteristics of rock 被引量:6
17
作者 周小平 钱七虎 杨海清 《Journal of Central South University》 SCIE EI CAS 2010年第1期150-155,共6页
The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of ... The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of loading rates from 9 × 10-4 to 1.537 MPa.m1/2/s. According to the approximate relationship between static and dynamic fracture toughness of Huanglong limestone, relationship between the growth velocity of crack and dynamic fracture toughness was obtained. The main conclusions are summarized as follows. (1) When the loading rate is higher than 0.027 MPa-ml/2/s, the fracture toughness of Huanglong limestone increases markedly with increasing loading rate. However, when loading rate is lower than 0.027 MPa-ml/2/s, fracture toughness slightly increases with an increase in loading rate. (2) It is found from experimental results that fracture toughness is linearly proportional to the logarithmic expression of loading rate. (3) For Huanglong limestone, when the growth velocity of crack is lower than 100 m/s, the energy release rate slightly decreases with increasing the growth velocity of crack. However, when the growth velocity of crack is higher than 1 000 m/s, the energy release rate dramatically decreases with an increase in the crack growth velocity. 展开更多
关键词 fracture toughness of rock three-point bending round bar loading rate velocity of crack growth
下载PDF
Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure 被引量:6
18
作者 李夕兵 洪亮 +2 位作者 尹土兵 周子龙 叶洲元 《Journal of Central South University of Technology》 EI 2008年第2期218-223,共6页
In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,... In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one. 展开更多
关键词 rock failure Hopkinson pressure bar DIAMETER minimum loading rate medium strain rate
下载PDF
Effects of water saturation and loading rate on direct shear tests of andesite 被引量:2
19
作者 Tianshu Bao Kimihiro Hashiba Katsunori Fukui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期653-662,共10页
For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous stud... For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous studies explored the rheological properties of rock in air-dried and water saturated conditions,as well as the water effects on compressive and tensile strengths.In this study,andesite was subjected to direct shear tests under five water saturation conditions,which were controlled by varying the wetting and drying time.The tests were conducted at alternating displacement rates under three vertical stresses.The results reveal that the shear strength decreases exponentially as water saturation increases,and that the increase in shear strength with a tenfold increase in displacement rate is nearly constant for each of the vertical stresses.Based on the findings of the shear tests in this study and the compression and tension tests in previous studies,the influences of both water saturation and loading rate on the Hoek-Brown failure criterion for the andesite was examined.These results indicate that the brittleness index of the andesite,which is defined as the ratio of uniaxial compressive strength to tensile strength,is independent of both water saturation and loading rate and that the influences of the water saturation dependence and the loading rate dependence of the failure criterion can be converted between each other. 展开更多
关键词 Direct shear test Water saturation loading rate dependence Failure criterion
下载PDF
INFLUENCE OF LOADING RATE ON DYNAMIC FRACTURE BEHAVIOR OF FIBER-REINFORCED COMPOSITES 被引量:4
20
作者 Kezhuang Gong Zheng Li Weizhong Qin 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第5期457-460,共4页
The effect of loading rate on the dynamic fracture properties and the failure mechanisms of glass fiber-reinforced composite materials under mode I fracture is studied. Dynamic reflective caustic experiments are carr... The effect of loading rate on the dynamic fracture properties and the failure mechanisms of glass fiber-reinforced composite materials under mode I fracture is studied. Dynamic reflective caustic experiments are carried out for two loading rates. By measuring the characteristic dimensions of the shadow spots during the caustic experiments, the dynamic SIFs are calculated for different loading rates. The experimental results indicate that the dynamic fracture toughness Kid increases remarkably with increasing loading rate, and the crack grows faster under the high-velocity impact. Moreover, by examining the crack growth routes and the fracture surfaces, it is shown that the loading rate also greatly affects the failure mechanisms at micro-scale. 展开更多
关键词 caustics method fiber-reinforced material mode I fracture loading rate
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部