In this paper, an integrated desulfurization and denitrification technology is proposed for ultra-low emissions of SO2 and NOx in the steel, power and cement industries. A cost-effective and operationally efficient co...In this paper, an integrated desulfurization and denitrification technology is proposed for ultra-low emissions of SO2 and NOx in the steel, power and cement industries. A cost-effective and operationally efficient control strategy is realized through a forced oxidation-absorption-reduction process, which reduces equipment investment and operating costs. The technology was adapted to continuous and intermittent denitrification in different temperature zones, promoting the recycling of desulfurization and denitrification products. The study also explored the use of a highly active absorbent obtained by the hydration reaction of coal ash and lime from a power company for the desulfurization and denitrification of sintered flue gases in iron and steel mills, which produces by-products that can be used as retarding agents in the cement industry, resulting in a circular economy. The article emphasizes the importance of improving the lime digestion process and developing new denitrification agents for environmentally safe and cost-effective flue gas treatment.展开更多
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different heigh...This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different height ratios(Rh=0.6,0.8,1,1.2 and 1.4)in delta wing vortex generators,which were not considered in the earlier studies,are investigated.Energy and exergy analyses are performed to gain maximum efficiency.The Reynolds number based on the outlet velocity and hydraulic diameter falls between 4400 and 22000,corresponding to the volume flow rate of 5.21–26.07 m^(3)/h.It is observed that the delta wing vortex generators with a higher height ratio yield maximum heat transfer enhancement and overall enhancement ratio.The empirical and numerical findings demonstrate that the exergy and thermal efficiencies decline in a specific range.TheNusselt number,pressure drop,energy,and exergy efficiencies enhance with rising Reynolds number,although the friction coefficient diminishes.The maximum heat transfer enhancement is 57%.According to the evaluation of exergy efficiency,the greatest efficiency of 31.2%is obtained at Rh=1.4 and Reynolds number 22000.展开更多
目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机...目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机分为两组,应用常规线圈(脊柱相控阵线圈,头颈联合线圈)、常规线圈联合AIR魔毯线圈对两组患者分别进行扫描。扫描序列包括胸椎矢状位T_(2)WI,T_(1)WI,T_(2)FLEX,进一步测量、比较SNR,CNR及脂肪抑制效果,分析MRI多序列诊断胸腰椎结核的准确率、特异度和灵敏度。结果常规线圈联合AIR-魔毯线圈扫描组,胸椎矢状位图像的SNR、CNR及压脂效果优于常规线圈组。结论联合应用AIR-魔毯线圈的图像SNR、CNR得到提高,脂肪抑制效果稳定良好。展开更多
It has been found that Ca-treated liquid steel can be cast at a lower superheat. To ascertain the reason for the improved castability of Ca-treated liquid steel and to find the optimal range of calcium content, the be...It has been found that Ca-treated liquid steel can be cast at a lower superheat. To ascertain the reason for the improved castability of Ca-treated liquid steel and to find the optimal range of calcium content, the behavior of calcium in liquid steel was studied in terms of the relationship between the calcium content and solid ratio of inclusions. The relationship between the calcium content and solid ratio of inclusions was obtained by means of the classification of nonmetallic inclusions in solid and liquid steels at casting temperature according to the Al2O3-CaO-SiO2 phase diagram. The optimum calcium content should be 17-23 ppm.展开更多
The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from...The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from poor stability in air. Here, we explore the air stable sulfide solid electrolytes in Li4-xSbxSn1-xS4 system. The solid solutions of Li4-xSbxSn1-xS4(0 ≤ x ≤ 0.5) can be formed in Li4-xSbxSn1-xS4 system. Li3.8 Sb0.2 Sn0.8 S4 achieves the highest ionic conductivity of 3.5 × 10-4 S cm-1 in this system,which is 5 times as that of Li4 Sn S4 and 3 orders of magnitude higher than that of Li3 Sb S4, respectively. Li3.8 Sb0.2 Sn0.8 S4 crystallizes into the same structure with high ionic conductivity phase of β-Li3 PS4. Moreover, Li3.8 Sb0.2 Sn0.8 S4 owns good stability in humid air. Matching with LiCoO2 and Li4 Ti5 O12,Li3.8 Sb0.2 Sn0.8 S4 exhibits the potential to be applied in all-solid-state batteries.展开更多
In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc...In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.展开更多
A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution upt...A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.展开更多
The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em>&...The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.展开更多
Solid‐state Zn–air batteries(ZABs)hold great potential for application in wearable and flexible electronics.However,further commercialization of current ZABs is still limited by the poor stability and low energy eff...Solid‐state Zn–air batteries(ZABs)hold great potential for application in wearable and flexible electronics.However,further commercialization of current ZABs is still limited by the poor stability and low energy efficiency.It is,thus,crucial to develop efficient catalysts as well as optimize the solid electrolyte system to unveil potential of the ZAB technology.Due to the low cost and versatility in tailoring the structures and properties,carbon materials have been extensively used as the conductive substrates,catalytic air electrodes,and important components in the electrolytes for the solid‐state ZABs.Within this context,we discuss the challenges facing current solid‐state ZABs and summarize the strategies developed to modify properties of carbon‐based electrodes and electrolytes.We highlight the metal−organic framework/covalent organic framework‐based electrodes,heteroatom‐doped carbon,and the composites formed of carbon with metal oxides/sulfides/phosphides.We also briefly discuss the progress of graphene oxide‐based solid electrolyte.展开更多
A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numeric...A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.展开更多
In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorbe...In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the展开更多
Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER...Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER) is often used to indicate the air flow condition. Based on a fuel cell system model for vehicles, OER performance was analyzed for different stack currents and temperatures in this paper, and the results show that the optimal OER was affected weakly by the stack temperature. In order to ensure the system working in optimal OER, a control scheme that includes an optimal OER regulator and a fuzzy control was proposed. According to the stack current, a reference value of air flow rate was obtained with the optimal OER regulator and then the air compressor motor voltage was controlled with the fuzzy controller to adjust the air flow rate provided by the air compressor. Simulation results show that the control method has good dynamic and static characteristics.展开更多
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) ...The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) to construct a feedforward/feedback control scheme to regulate the air-fuel ratio. Using fuzzy neural networks, a fuzzy neural hybrid controller is obtained based on PI controller. The new controller, which can adjust parameters online, has been tested in transient air-fuel ratio control of a CNG engine.展开更多
A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diam...A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diameter significantly increased under FACE conditions, while the CO2 enrichment decreased the N concentration in rice roots without any change in the C content, leading to an increase in root C:N ratio. Moreover, the elevated CO2 resulted in a remarkable decrease of root activity, expressed as per unit root dry weight, which might be responsible for decreased N concentration in roots.展开更多
This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-l...This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.展开更多
A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channe...A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channels are simulated numerically.The particle erosion experiments in these two devices are carried out under different particle concentrations.The results showthat the test device with rectangular channel can effectively improve the clarity and precision of combustion diagnosis image and can be used for research on combustion performance of solid propellant under lowconcentration particle erosion;the circular channel device has good particle convergent effect,provides high concentration particle erosion,and can be used for research on the combustion performance of solid propellant under high concentration particle erosion.The experiment data indicates that the propellant burning rate does not change obviously in lower particle concentration;the propellant with lower static burning rate increases remarkably under particle erosion,while the propellant with high static burning rate is not sensitive to the particle erosion.展开更多
Background:To predict the moisture ratio of Radix isatidis extract during drying.Methods:Artificial neural networks were designed using the MATLAB neural network toolbox to produce a moisture ratio prediction model of...Background:To predict the moisture ratio of Radix isatidis extract during drying.Methods:Artificial neural networks were designed using the MATLAB neural network toolbox to produce a moisture ratio prediction model of Radix isatidis extract during hot air drying and vacuum drying,where regression values and mean squared error were used as evaluation indexes to optimize the number of hidden layer nodes and determine the topological structure of artificial neural networks model.In addition,the drying curves for the different drying parameters were analyzed.Results:The optimal topological structure of the moisture ratio prediction model for hot air drying and vacuum drying of Radix isatidis extract were“4-9-1”and“5-9-1”respectively,and the regression values between the predicted value and the experimental value is close to 1.This indicates that it has a high prediction accuracy.The moisture ratio gradually decreases with an increase in the drying time,reducing the loading,initial moisture content,increasing the temperature,and pressure can shorten the drying time and improve the drying efficiency.Conclusion:Artificial neural networks technology has the advantages of rapid and accurate prediction,and can provide a theoretical basis and technical support for online prediction during the drying process of the extract.展开更多
The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different ...The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different dehumidifiers such as desiccant column and desiccant wheel were investigated. The ANSYS and TRASYS software were used to predict the results of dehumidifiers and the desiccant cooling systems, respectively. The desiccant bed contained approximately 15 kg of silica-gel, with 3 mm average diameter. Results indicated that the pressure drop and the adsorption rate of desiccant column are usually higher than those of the desiccant wheel. The feasible and practical adsorption rate of desiccant wheel was 0.102 kgw/h at air flow rate 1.0 kg/min, regenerated air temperature of 55?C and at a wheel speed of 2.5 rpm. The humidity ratio of conditioning space and cooling load of split-type air conditioner was decreased to 0.002 kgw/kgda (14%) and 0.71 kWth (19.26%), respectively. Consequently, the thermal comfort was improved from 0.5 PMV (10.12% PPD) to 0.3 PMV (7.04% PPD).展开更多
文摘In this paper, an integrated desulfurization and denitrification technology is proposed for ultra-low emissions of SO2 and NOx in the steel, power and cement industries. A cost-effective and operationally efficient control strategy is realized through a forced oxidation-absorption-reduction process, which reduces equipment investment and operating costs. The technology was adapted to continuous and intermittent denitrification in different temperature zones, promoting the recycling of desulfurization and denitrification products. The study also explored the use of a highly active absorbent obtained by the hydration reaction of coal ash and lime from a power company for the desulfurization and denitrification of sintered flue gases in iron and steel mills, which produces by-products that can be used as retarding agents in the cement industry, resulting in a circular economy. The article emphasizes the importance of improving the lime digestion process and developing new denitrification agents for environmentally safe and cost-effective flue gas treatment.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
文摘This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different height ratios(Rh=0.6,0.8,1,1.2 and 1.4)in delta wing vortex generators,which were not considered in the earlier studies,are investigated.Energy and exergy analyses are performed to gain maximum efficiency.The Reynolds number based on the outlet velocity and hydraulic diameter falls between 4400 and 22000,corresponding to the volume flow rate of 5.21–26.07 m^(3)/h.It is observed that the delta wing vortex generators with a higher height ratio yield maximum heat transfer enhancement and overall enhancement ratio.The empirical and numerical findings demonstrate that the exergy and thermal efficiencies decline in a specific range.TheNusselt number,pressure drop,energy,and exergy efficiencies enhance with rising Reynolds number,although the friction coefficient diminishes.The maximum heat transfer enhancement is 57%.According to the evaluation of exergy efficiency,the greatest efficiency of 31.2%is obtained at Rh=1.4 and Reynolds number 22000.
文摘目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机分为两组,应用常规线圈(脊柱相控阵线圈,头颈联合线圈)、常规线圈联合AIR魔毯线圈对两组患者分别进行扫描。扫描序列包括胸椎矢状位T_(2)WI,T_(1)WI,T_(2)FLEX,进一步测量、比较SNR,CNR及脂肪抑制效果,分析MRI多序列诊断胸腰椎结核的准确率、特异度和灵敏度。结果常规线圈联合AIR-魔毯线圈扫描组,胸椎矢状位图像的SNR、CNR及压脂效果优于常规线圈组。结论联合应用AIR-魔毯线圈的图像SNR、CNR得到提高,脂肪抑制效果稳定良好。
文摘It has been found that Ca-treated liquid steel can be cast at a lower superheat. To ascertain the reason for the improved castability of Ca-treated liquid steel and to find the optimal range of calcium content, the behavior of calcium in liquid steel was studied in terms of the relationship between the calcium content and solid ratio of inclusions. The relationship between the calcium content and solid ratio of inclusions was obtained by means of the classification of nonmetallic inclusions in solid and liquid steels at casting temperature according to the Al2O3-CaO-SiO2 phase diagram. The optimum calcium content should be 17-23 ppm.
基金supported by the National Basic Research Program of China(973 Program,2015CB258400)the Program for HUST Interdisciplinary Innovation Team(2015ZDTD021)the China Postdoctoral Science Foundation Grant(2017M622422)。
文摘The sulfide solid electrolytes have the characteristics of high ionic conductivity and low grain boundary resistance, which make them suitable for bulk-type all-solid-state batteries. However, most of them suffer from poor stability in air. Here, we explore the air stable sulfide solid electrolytes in Li4-xSbxSn1-xS4 system. The solid solutions of Li4-xSbxSn1-xS4(0 ≤ x ≤ 0.5) can be formed in Li4-xSbxSn1-xS4 system. Li3.8 Sb0.2 Sn0.8 S4 achieves the highest ionic conductivity of 3.5 × 10-4 S cm-1 in this system,which is 5 times as that of Li4 Sn S4 and 3 orders of magnitude higher than that of Li3 Sb S4, respectively. Li3.8 Sb0.2 Sn0.8 S4 crystallizes into the same structure with high ionic conductivity phase of β-Li3 PS4. Moreover, Li3.8 Sb0.2 Sn0.8 S4 owns good stability in humid air. Matching with LiCoO2 and Li4 Ti5 O12,Li3.8 Sb0.2 Sn0.8 S4 exhibits the potential to be applied in all-solid-state batteries.
基金The authors would like to acknowledge the National Natural Science Foundation of China(Grant Nos.11802137,11702143)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_0292)+1 种基金the Natural Science Foundation for Young Scientists of Jiangsu Province of China(Grant No.BK20190468)the Fundamental Research Funds for the Central Universities(Grant Nos.30918011343,30919011259,309190112A1).
文摘In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.
基金This paper was supported by the National Natural Science Foundation of China (No. 30271053)
文摘A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.
文摘The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.
基金This study was financially supported by the National Key R&D Research Program of China(Grant No.2018YFB0905400)National Natural Science Foundationof China(Grant Nos.,51925207,U1910210,51972067,51802044,and 51872277)+2 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.2019B151502039)Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140026)the DNL Cooperation Fund,CAS(Grant No.DNL180310).
文摘Solid‐state Zn–air batteries(ZABs)hold great potential for application in wearable and flexible electronics.However,further commercialization of current ZABs is still limited by the poor stability and low energy efficiency.It is,thus,crucial to develop efficient catalysts as well as optimize the solid electrolyte system to unveil potential of the ZAB technology.Due to the low cost and versatility in tailoring the structures and properties,carbon materials have been extensively used as the conductive substrates,catalytic air electrodes,and important components in the electrolytes for the solid‐state ZABs.Within this context,we discuss the challenges facing current solid‐state ZABs and summarize the strategies developed to modify properties of carbon‐based electrodes and electrolytes.We highlight the metal−organic framework/covalent organic framework‐based electrodes,heteroatom‐doped carbon,and the composites formed of carbon with metal oxides/sulfides/phosphides.We also briefly discuss the progress of graphene oxide‐based solid electrolyte.
基金Project(51078127) supported by the National Natural Science Foundation of ChinaProject(JJ201109091631) supported by the Foundation for Young Scientists of Jiangxi Education Department, China
文摘A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.
文摘In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the
基金supported by the National Natural Science Foundation of China (No. 51177138)the Research Fund for the Doctoral Program of High Education of China (No.20100184110015)Sichuan Province International Technology Cooperation and Exchange Program (No. 2012HH0007)
文摘Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER) is often used to indicate the air flow condition. Based on a fuel cell system model for vehicles, OER performance was analyzed for different stack currents and temperatures in this paper, and the results show that the optimal OER was affected weakly by the stack temperature. In order to ensure the system working in optimal OER, a control scheme that includes an optimal OER regulator and a fuzzy control was proposed. According to the stack current, a reference value of air flow rate was obtained with the optimal OER regulator and then the air compressor motor voltage was controlled with the fuzzy controller to adjust the air flow rate provided by the air compressor. Simulation results show that the control method has good dynamic and static characteristics.
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.
文摘The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) to construct a feedforward/feedback control scheme to regulate the air-fuel ratio. Using fuzzy neural networks, a fuzzy neural hybrid controller is obtained based on PI controller. The new controller, which can adjust parameters online, has been tested in transient air-fuel ratio control of a CNG engine.
基金National Natural Science Foundation of China (nos. 40231003 , 40110817) Knowledge Innovation Program of Chinese Academy of Sciences (no. KZCX2-408) the National Key Project on Basic Sciences (no. 2002CB714003).
文摘A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diameter significantly increased under FACE conditions, while the CO2 enrichment decreased the N concentration in rice roots without any change in the C content, leading to an increase in root C:N ratio. Moreover, the elevated CO2 resulted in a remarkable decrease of root activity, expressed as per unit root dry weight, which might be responsible for decreased N concentration in roots.
文摘This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.
基金Sponsored by the National Nature Science Foundation of China(50976095)
文摘A test device with rectangular channel is developed to study the combustion performance of solid propellant in high temperature particles erosion.The flowfields in this newdevice and a test device with circular channels are simulated numerically.The particle erosion experiments in these two devices are carried out under different particle concentrations.The results showthat the test device with rectangular channel can effectively improve the clarity and precision of combustion diagnosis image and can be used for research on combustion performance of solid propellant under lowconcentration particle erosion;the circular channel device has good particle convergent effect,provides high concentration particle erosion,and can be used for research on the combustion performance of solid propellant under high concentration particle erosion.The experiment data indicates that the propellant burning rate does not change obviously in lower particle concentration;the propellant with lower static burning rate increases remarkably under particle erosion,while the propellant with high static burning rate is not sensitive to the particle erosion.
基金found by Guizhou Province Science and Technology Plan Project(No.Qiankeheji-ZK(2021)General 533)Domestic First-Class Discipline Construction Project in Guizhou Province(No.GNYL(2017)008)Guizhou Province Drug New Formulation New Process Technology Innovation Talent Team Project(No.Qiankehe Platform Talents(2017)5655).
文摘Background:To predict the moisture ratio of Radix isatidis extract during drying.Methods:Artificial neural networks were designed using the MATLAB neural network toolbox to produce a moisture ratio prediction model of Radix isatidis extract during hot air drying and vacuum drying,where regression values and mean squared error were used as evaluation indexes to optimize the number of hidden layer nodes and determine the topological structure of artificial neural networks model.In addition,the drying curves for the different drying parameters were analyzed.Results:The optimal topological structure of the moisture ratio prediction model for hot air drying and vacuum drying of Radix isatidis extract were“4-9-1”and“5-9-1”respectively,and the regression values between the predicted value and the experimental value is close to 1.This indicates that it has a high prediction accuracy.The moisture ratio gradually decreases with an increase in the drying time,reducing the loading,initial moisture content,increasing the temperature,and pressure can shorten the drying time and improve the drying efficiency.Conclusion:Artificial neural networks technology has the advantages of rapid and accurate prediction,and can provide a theoretical basis and technical support for online prediction during the drying process of the extract.
文摘The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different dehumidifiers such as desiccant column and desiccant wheel were investigated. The ANSYS and TRASYS software were used to predict the results of dehumidifiers and the desiccant cooling systems, respectively. The desiccant bed contained approximately 15 kg of silica-gel, with 3 mm average diameter. Results indicated that the pressure drop and the adsorption rate of desiccant column are usually higher than those of the desiccant wheel. The feasible and practical adsorption rate of desiccant wheel was 0.102 kgw/h at air flow rate 1.0 kg/min, regenerated air temperature of 55?C and at a wheel speed of 2.5 rpm. The humidity ratio of conditioning space and cooling load of split-type air conditioner was decreased to 0.002 kgw/kgda (14%) and 0.71 kWth (19.26%), respectively. Consequently, the thermal comfort was improved from 0.5 PMV (10.12% PPD) to 0.3 PMV (7.04% PPD).