By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of t...By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of the rational Bézier curve is also improved. The conclusion of the extreme value problem is thus further confirmed.展开更多
A method for computing the visible regions of free-form surfaces is proposed in this paper. Our work is focused on accurately calculating the visible regions of the sequenced rational Bézier surfaces forming a so...A method for computing the visible regions of free-form surfaces is proposed in this paper. Our work is focused on accurately calculating the visible regions of the sequenced rational Bézier surfaces forming a solid model and having coincident edges but no inner-intersection among them. The proposed method calculates the silhouettes of the surfaces without tessellating them into triangle meshes commonly used in previous methods so that arbitrary precision can be obtained. The computed sil- houettes of visible surfaces are projected onto a plane orthogonal to the parallel light. Then their spatial relationship is applied to calculate the boundaries of mutual-occlusion regions. As the connectivity of the surfaces on the solid model is taken into account, a surface clustering technique is also employed and the mutual-occlusion calculation is accelerated. Experimental results showed that our method is efficient and robust, and can also handle complex shapes with arbitrary precision.展开更多
An explicit formula is developed to decompose a rational triangular Bezierpatch into three non-degenerate rational rectangular B6zier patches of the samedegree. This formula yields a stable algorithm to compute the co...An explicit formula is developed to decompose a rational triangular Bezierpatch into three non-degenerate rational rectangular B6zier patches of the samedegree. This formula yields a stable algorithm to compute the control verticesof those three rectallgular subpatches. Some properties of the subdivision arediscussed and the formula is illustrated with an example.展开更多
By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents so...By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents some explicit formulas of the first and second derivatives of rational triangular Bézier surface with respect to each variable (including the mixed derivative) and derives some estimations of bound both on the direction and magnitude of the corresponding derivatives. All the results above have value not only in surface theory but also in practice.展开更多
The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision o...The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision of order 2. Matrix method is used to subdivide the curves or surfaces which makes the subdivision more concise and intuitive. Dividing depths of Bezier curves and surfaces are used to subdivide the curves or surfaces adaptively Therefore the convergent precision and the computing efficiency of finding the intersections of curves and surfaces have been improved by the methods proposed in the paper.展开更多
文摘By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of the rational Bézier curve is also improved. The conclusion of the extreme value problem is thus further confirmed.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312106) and the National Natural Science Foundation of China (Nos. 60533070, and 60403047). The third author was supported by the project sponsored by a Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200342) and a Program for New Century Excellent Talents in Uni-versity (No. NCET-04-0088), China
文摘A method for computing the visible regions of free-form surfaces is proposed in this paper. Our work is focused on accurately calculating the visible regions of the sequenced rational Bézier surfaces forming a solid model and having coincident edges but no inner-intersection among them. The proposed method calculates the silhouettes of the surfaces without tessellating them into triangle meshes commonly used in previous methods so that arbitrary precision can be obtained. The computed sil- houettes of visible surfaces are projected onto a plane orthogonal to the parallel light. Then their spatial relationship is applied to calculate the boundaries of mutual-occlusion regions. As the connectivity of the surfaces on the solid model is taken into account, a surface clustering technique is also employed and the mutual-occlusion calculation is accelerated. Experimental results showed that our method is efficient and robust, and can also handle complex shapes with arbitrary precision.
文摘An explicit formula is developed to decompose a rational triangular Bezierpatch into three non-degenerate rational rectangular B6zier patches of the samedegree. This formula yields a stable algorithm to compute the control verticesof those three rectallgular subpatches. Some properties of the subdivision arediscussed and the formula is illustrated with an example.
基金Project supported by the National Natural Science Foundation of China (Nos. 60373033 & 60333010), the National Natural Science Foundation for Innovative Research Groups (No. 60021201), and the National Basic Research Program (973) of China (No. 2002CB312101)
文摘By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents some explicit formulas of the first and second derivatives of rational triangular Bézier surface with respect to each variable (including the mixed derivative) and derives some estimations of bound both on the direction and magnitude of the corresponding derivatives. All the results above have value not only in surface theory but also in practice.
文摘The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented, which use extrapolating acceleration technique, and have convergent precision of order 2. Matrix method is used to subdivide the curves or surfaces which makes the subdivision more concise and intuitive. Dividing depths of Bezier curves and surfaces are used to subdivide the curves or surfaces adaptively Therefore the convergent precision and the computing efficiency of finding the intersections of curves and surfaces have been improved by the methods proposed in the paper.