In this paper, the one-dimensional time-homogenuous lto’s stochastic differential equations, which have degenerate and discontinuous diffusion coefficients, are considered. The non-confluent property of solutions is ...In this paper, the one-dimensional time-homogenuous lto’s stochastic differential equations, which have degenerate and discontinuous diffusion coefficients, are considered. The non-confluent property of solutions is showed under some local integrability condition on the diffusion and drift coefficients. The strong comparison theorem for solutions is also established.展开更多
We obtain the Laplacian comparison theorem and the Bishop- Gromov comparison theorem on a Finsler manifold with the weighted Ricci curvature Ric∞ bounded below. As applications, we prove that if the weighted Ricci cu...We obtain the Laplacian comparison theorem and the Bishop- Gromov comparison theorem on a Finsler manifold with the weighted Ricci curvature Ric∞ bounded below. As applications, we prove that if the weighted Ricci curvature Ri∞ is bounded below by a positive number, then the manifold must have finite fundamental group, and must be compact if the distortion is also bounded. Moreover, we give the Calabi-Yau linear volume growth theorem on a Finsler manifold with nonnegative weighted Ricci curvature.展开更多
文摘In this paper, the one-dimensional time-homogenuous lto’s stochastic differential equations, which have degenerate and discontinuous diffusion coefficients, are considered. The non-confluent property of solutions is showed under some local integrability condition on the diffusion and drift coefficients. The strong comparison theorem for solutions is also established.
基金This work was supported in part by the Natural Science Foundation of Anhui Province (No. 1608085MA03) and the National Natural Science Foundation of China (Grant No. 11471246).
文摘We obtain the Laplacian comparison theorem and the Bishop- Gromov comparison theorem on a Finsler manifold with the weighted Ricci curvature Ric∞ bounded below. As applications, we prove that if the weighted Ricci curvature Ri∞ is bounded below by a positive number, then the manifold must have finite fundamental group, and must be compact if the distortion is also bounded. Moreover, we give the Calabi-Yau linear volume growth theorem on a Finsler manifold with nonnegative weighted Ricci curvature.