With the prevalence of Internet of Things(loT)devices,data collection has the potential to improve people's lives and create a significant value.However,it also exposes sensitive information,which leads to privacy...With the prevalence of Internet of Things(loT)devices,data collection has the potential to improve people's lives and create a significant value.However,it also exposes sensitive information,which leads to privacy risks.An approach called N-source anonymity has been used for privacy preservation in raw data collection,but most of the existing schemes do not have a balanced efficiency and robustness.In this work,a lightweight and efficient raw data collection scheme is proposed.The proposed scheme can not only collect data from the original users but also protect their privacy.Besides,the proposed scheme can resist user poisoning attacks,and the use of the reward method can motivate users to actively provide data.Analysis and simulation indicate that the proposed scheme is safe against poison attacks.Additionally,the proposed scheme has better performance in terms of computation and communication overhead compared to existing methods.High efficiency and appropriate incentive mechanisms indicate that the scheme is practical for IoT systems.展开更多
When the saturation degree (SD) of space-borne SAR raw data is high, the performance of conventional block adaptive quantization (BAQ) deteriorates obviously. In order to overcome the drawback, this paper studies ...When the saturation degree (SD) of space-borne SAR raw data is high, the performance of conventional block adaptive quantization (BAQ) deteriorates obviously. In order to overcome the drawback, this paper studies the mapping between the average signal magnitude (ASM) and the standard deviation of the input signal (SDIS) to the A/D from the original reference. Then, it points out the mistake of the mapping and introduces the concept of the standard deviation of the output signal (SDOS) from the A/D. After that, this paper educes the mapping between the ASM and SDOS from the A/D. Monte-Carlo experiment shows that none of the above two mappings is the optimal in the whole set of SD. Thus, this paper proposes the concept of piecewise linear mapping and the searching algorithm in the whole set of SD. According to the linear part, this paper gives the certification and analytical value of k and for nonlinear part, and utilizes the searching algorithm mentioned above to search the corresponding value of k. Experimental results based on simulated data and real data show that the performance of new algorithm is better than conventional BAQ when raw data is in heavy SD.展开更多
The Synthetic Aperture Radar(SAR)raw data generator is required to the evaluation of focusing algorithms,moving target analysis,and hardware design.The time-domain SAR simulator can generate the accurate raw data but ...The Synthetic Aperture Radar(SAR)raw data generator is required to the evaluation of focusing algorithms,moving target analysis,and hardware design.The time-domain SAR simulator can generate the accurate raw data but it needs much time.The frequency-domain simulator not only increases the efficiency but also considers the trajectory deviations of the radar.In addition,the raw signal of the extended scene included static and moving targets can be generated by some frequency-domain simulators.However,the existing simulators concentrate on the raw signal simulation of the static extended scene and moving targets at uniform speed mostly.As for the issue,the two-dimensional signal spectrum of moving targets with constant acceleration can be derived accurately based on the geometric model of a side-looking SAR and reversion of series.And a frequency-domain algorithm for SAR echo signal simulation is presented based on the two-dimensional signal spectrum.The raw data generated with proposed method is verified by several simulation experiments.In addition to reveal the efficiency of the presented frequency-domain SAR scene simulator,the computational complexity of the proposed method is compared with the time-domain approach using the complex multiplication.Numerical results demonstrate that the present method can reduce the computational time significantly without accuracy loss while simulating SAR raw data.展开更多
Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, fo...Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.展开更多
An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly hand...An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly handle the case of the fast moving targets in high squint geometry.As for the issue,the analytical expression for the two Dimensional(2-D)signal spectrum of moving targets is derived and a fast raw echo simulation method is proposed in this study.The proposed simulator can accommodate the moving targets in the high squint geometry,whose processing steps of the simulation are given in detail and its computational complexity is analyzed.The simulation data for static and moving targets are processed and analyzed,and the results are given to validate the effectiveness of the proposed approach.展开更多
Full electronic automation in stock exchanges has recently become popular,generat-ing high-frequency intraday data and motivating the development of near real-time price forecasting methods.Machine learning algorithms...Full electronic automation in stock exchanges has recently become popular,generat-ing high-frequency intraday data and motivating the development of near real-time price forecasting methods.Machine learning algorithms are widely applied to mid-price stock predictions.Processing raw data as inputs for prediction models(e.g.,data thinning and feature engineering)can primarily affect the performance of the prediction methods.However,researchers rarely discuss this topic.This motivated us to propose three novel modelling strategies for processing raw data.We illustrate how our novel modelling strategies improve forecasting performance by analyzing high-frequency data of the Dow Jones 30 component stocks.In these experiments,our strategies often lead to statistically significant improvement in predictions.The three strategies improve the F1 scores of the SVM models by 0.056,0.087,and 0.016,respectively.展开更多
Encouraging and astonishing developments have recently been achieved in image-based diagnostic technology.Modern medical care and imaging technology are becoming increasingly inseparable.However,the current diagnosis ...Encouraging and astonishing developments have recently been achieved in image-based diagnostic technology.Modern medical care and imaging technology are becoming increasingly inseparable.However,the current diagnosis pattern of signal to image to knowledge inevitably leads to information distortion and noise introduction in the procedure of image reconstruction(from signal to image).Artificial intelligence(AI)technologies that can mine knowledge from vast amounts of data offer opportunities to disrupt established workflows.In this prospective study,for the first time,we develop an AI-based signal-toknowledge diagnostic scheme for lung nodule classification directly from the computed tomography(CT)raw data(the signal).We find that the raw data achieves almost comparable performance with CT,indicating that it is possible to diagnose diseases without reconstructing images.Moreover,the incorporation of raw data through three common convolutional network structures greatly improves the performance of the CT models in all cohorts(with a gain ranging from 0.01 to 0.12),demonstrating that raw data contains diagnostic information that CT does not possess.Our results break new ground and demonstrate the potential for direct signal-to-knowledge domain analysis.展开更多
A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The pre...A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The predicted data are used to draw washability curves and to provide a rapid evaluation of the effect from heavy medium induced separation.Thirty-one production shifts worth of fast float/sink data and the corresponding quick ash data are used to verify the model.The results show a small error with an arithmetic average of 0.53 and an absolute average error of 1.50.This indicates that this model has high precision.The theoretical yield from the washability curves is 76.47% for the monthly comprehensive data and 81.31% using the model data.This is for a desired cleaned coal ash of 9%.The relative error between these two is 6.33%,which is small and indicates that the predicted data can be used to rapidly evaluate the separation effect of gravity separation equipment.展开更多
基金supported in part by the National Natural Science Foundation of China(62072133)the Innovation Project of Guangxi Graduate Education(YCSW2022279)Wenzhou Science and Technology Plan(2023ZW0013).
文摘With the prevalence of Internet of Things(loT)devices,data collection has the potential to improve people's lives and create a significant value.However,it also exposes sensitive information,which leads to privacy risks.An approach called N-source anonymity has been used for privacy preservation in raw data collection,but most of the existing schemes do not have a balanced efficiency and robustness.In this work,a lightweight and efficient raw data collection scheme is proposed.The proposed scheme can not only collect data from the original users but also protect their privacy.Besides,the proposed scheme can resist user poisoning attacks,and the use of the reward method can motivate users to actively provide data.Analysis and simulation indicate that the proposed scheme is safe against poison attacks.Additionally,the proposed scheme has better performance in terms of computation and communication overhead compared to existing methods.High efficiency and appropriate incentive mechanisms indicate that the scheme is practical for IoT systems.
文摘When the saturation degree (SD) of space-borne SAR raw data is high, the performance of conventional block adaptive quantization (BAQ) deteriorates obviously. In order to overcome the drawback, this paper studies the mapping between the average signal magnitude (ASM) and the standard deviation of the input signal (SDIS) to the A/D from the original reference. Then, it points out the mistake of the mapping and introduces the concept of the standard deviation of the output signal (SDOS) from the A/D. After that, this paper educes the mapping between the ASM and SDOS from the A/D. Monte-Carlo experiment shows that none of the above two mappings is the optimal in the whole set of SD. Thus, this paper proposes the concept of piecewise linear mapping and the searching algorithm in the whole set of SD. According to the linear part, this paper gives the certification and analytical value of k and for nonlinear part, and utilizes the searching algorithm mentioned above to search the corresponding value of k. Experimental results based on simulated data and real data show that the performance of new algorithm is better than conventional BAQ when raw data is in heavy SD.
基金The work was supported by the Natural Science Foundation of Shandong Province,China.(Grant No.ZR2017BF032)。
文摘The Synthetic Aperture Radar(SAR)raw data generator is required to the evaluation of focusing algorithms,moving target analysis,and hardware design.The time-domain SAR simulator can generate the accurate raw data but it needs much time.The frequency-domain simulator not only increases the efficiency but also considers the trajectory deviations of the radar.In addition,the raw signal of the extended scene included static and moving targets can be generated by some frequency-domain simulators.However,the existing simulators concentrate on the raw signal simulation of the static extended scene and moving targets at uniform speed mostly.As for the issue,the two-dimensional signal spectrum of moving targets with constant acceleration can be derived accurately based on the geometric model of a side-looking SAR and reversion of series.And a frequency-domain algorithm for SAR echo signal simulation is presented based on the two-dimensional signal spectrum.The raw data generated with proposed method is verified by several simulation experiments.In addition to reveal the efficiency of the presented frequency-domain SAR scene simulator,the computational complexity of the proposed method is compared with the time-domain approach using the complex multiplication.Numerical results demonstrate that the present method can reduce the computational time significantly without accuracy loss while simulating SAR raw data.
文摘Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.
文摘An accurate and efficient Synthetic Aperture Radar(SAR)raw data generator is of considerable value for testing system parameters and verifying imaging algorithms.Nevertheless,the existing simulator cannot exactly handle the case of the fast moving targets in high squint geometry.As for the issue,the analytical expression for the two Dimensional(2-D)signal spectrum of moving targets is derived and a fast raw echo simulation method is proposed in this study.The proposed simulator can accommodate the moving targets in the high squint geometry,whose processing steps of the simulation are given in detail and its computational complexity is analyzed.The simulation data for static and moving targets are processed and analyzed,and the results are given to validate the effectiveness of the proposed approach.
基金Canada Research Chair(950231363,XZ),Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grants(RGPIN-20203530,LX)the Social Sciences and Humanities Research Council of Canada(SSHRC)Insight Development Grants(430-2018-00557,KX).
文摘Full electronic automation in stock exchanges has recently become popular,generat-ing high-frequency intraday data and motivating the development of near real-time price forecasting methods.Machine learning algorithms are widely applied to mid-price stock predictions.Processing raw data as inputs for prediction models(e.g.,data thinning and feature engineering)can primarily affect the performance of the prediction methods.However,researchers rarely discuss this topic.This motivated us to propose three novel modelling strategies for processing raw data.We illustrate how our novel modelling strategies improve forecasting performance by analyzing high-frequency data of the Dow Jones 30 component stocks.In these experiments,our strategies often lead to statistically significant improvement in predictions.The three strategies improve the F1 scores of the SVM models by 0.056,0.087,and 0.016,respectively.
基金supported by the National Key Research and Development Program of China (2017YFA0205200,2023YFC2415200,2021YFF1201003,and 2021YFC2500402)the National Natural Science Foundation of China (82022036,91959130,81971776,62027901,81930053,81771924,62333022,82361168664,62176013,and 82302317)+5 种基金the Beijing Natural Science Foundation (Z20J00105)Strategic Priority Research Program of Chinese Academy of Sciences (XDB38040200)Chinese Academy of Sciences (GJJSTD20170004 and QYZDJ-SSW-JSC005)the Project of High-Level Talents Team Introduction in Zhuhai City (Zhuhai HLHPTP201703)the Youth Innovation Promotion Association CAS (Y2021049)the China Postdoctoral Science Foundation (2021M700341).
文摘Encouraging and astonishing developments have recently been achieved in image-based diagnostic technology.Modern medical care and imaging technology are becoming increasingly inseparable.However,the current diagnosis pattern of signal to image to knowledge inevitably leads to information distortion and noise introduction in the procedure of image reconstruction(from signal to image).Artificial intelligence(AI)technologies that can mine knowledge from vast amounts of data offer opportunities to disrupt established workflows.In this prospective study,for the first time,we develop an AI-based signal-toknowledge diagnostic scheme for lung nodule classification directly from the computed tomography(CT)raw data(the signal).We find that the raw data achieves almost comparable performance with CT,indicating that it is possible to diagnose diseases without reconstructing images.Moreover,the incorporation of raw data through three common convolutional network structures greatly improves the performance of the CT models in all cohorts(with a gain ranging from 0.01 to 0.12),demonstrating that raw data contains diagnostic information that CT does not possess.Our results break new ground and demonstrate the potential for direct signal-to-knowledge domain analysis.
基金National Natural Science Foundation of China (No. 51174202)Doctoral Fund of Ministry of Education of China (No. 20100095110013)
文摘A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The predicted data are used to draw washability curves and to provide a rapid evaluation of the effect from heavy medium induced separation.Thirty-one production shifts worth of fast float/sink data and the corresponding quick ash data are used to verify the model.The results show a small error with an arithmetic average of 0.53 and an absolute average error of 1.50.This indicates that this model has high precision.The theoretical yield from the washability curves is 76.47% for the monthly comprehensive data and 81.31% using the model data.This is for a desired cleaned coal ash of 9%.The relative error between these two is 6.33%,which is small and indicates that the predicted data can be used to rapidly evaluate the separation effect of gravity separation equipment.