Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption t...Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption test) and mechanical tests (dry compressive strength test). The results indicate that samples made of latex content less than 15% dissolve completely into water. So it was impossible to make sample with these contents. Samples with 15% of raw rubber content or more are steady after water resistance test. The absorption rate of these samples decreases as the latex content increases. It goes from 14.45% for the samples at 15% to 5.87% for those at 30%. Therefore, the compressive strength test indicates that the resistance increases from 0.37 MPa for samples without latex to 3.15 MPa for those at 30% of latex content. Also, the rheological study shows that the samples pass from a brittle behaviour to a plastic behaviour when the latex content increases. The behaviour of the sample according to these different tests shows that this material can be used in several activity areas, such as construction, road building and sports area.展开更多
文摘Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption test) and mechanical tests (dry compressive strength test). The results indicate that samples made of latex content less than 15% dissolve completely into water. So it was impossible to make sample with these contents. Samples with 15% of raw rubber content or more are steady after water resistance test. The absorption rate of these samples decreases as the latex content increases. It goes from 14.45% for the samples at 15% to 5.87% for those at 30%. Therefore, the compressive strength test indicates that the resistance increases from 0.37 MPa for samples without latex to 3.15 MPa for those at 30% of latex content. Also, the rheological study shows that the samples pass from a brittle behaviour to a plastic behaviour when the latex content increases. The behaviour of the sample according to these different tests shows that this material can be used in several activity areas, such as construction, road building and sports area.