Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.M...Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.展开更多
Glucoamylase was immobilized onto novel porous polymer supports containing cyclic carbonate. The relationship between activity of immobilized glucoamylase and the properties of porous polymer supports was investigated...Glucoamylase was immobilized onto novel porous polymer supports containing cyclic carbonate. The relationship between activity of immobilized glucoamylase and the properties of porous polymer supports was investigated. The operation stability and storage stability of immobilized glucoamylase were studied.展开更多
Employing RT-PCR amplification method, the mature pepfide coding sequence of glucoamylase (amyA) gene was amplified from total RNA of Talaro- myces emersonii and the xylanase (xyrut) gene from genomic DNA ofPaenib...Employing RT-PCR amplification method, the mature pepfide coding sequence of glucoamylase (amyA) gene was amplified from total RNA of Talaro- myces emersonii and the xylanase (xyrut) gene from genomic DNA ofPaenibacillus sp. H10-3. The result showed that the mature peptide sequence of amyA is 1857 bp long and encodes 618 amino acids; and the mature peptide sequence of xynA is 636 bp long and encodes 211 amino acids. Then these two genes were spliced by overlap extension PCR ( SOE-PCR), yielding fusion gene amyA-l-xynA. The fusion gene amyA-l-xynA was then cloned into a Pichia pastoris expression vector pPIC9 to produce the recombinant expression plasmid pPIC9-amyA-l-xynA. The recombinant plasmid pPICg-amyA-l-xynA was linearized and transformed into Pichia pastoris GSll5 via electric shock, yielding engineering strain ALX2. The maximum yields of glucoamylase and xylanase in ALX2 fermentation supernatant were determined as 10.7 and 51.8 U/ml, respectively.展开更多
A mesophilic strain of Aspergillus niger isolated from cassava effluent samples produced extracellular glucoamylase in submerged culture containing 2% (w/v) soluble or sweet potato starch. On soluble starch medium the...A mesophilic strain of Aspergillus niger isolated from cassava effluent samples produced extracellular glucoamylase in submerged culture containing 2% (w/v) soluble or sweet potato starch. On soluble starch medium the maximum glucoamylase activity in the culture filtrate was 9.40 U/mg compared to 8.24 U/mg on sweet potato starch culture filtrate. The mycelial dry weight for both media was 494 and 418 mg respectively. The maximum glucoamylase activity was obtained at a growth temperature of 40°C and pH 4.5. The implication is that the bioprocess of utilizing sweet potato starch in the culture is attractive due to its relatively cheaper availability in Nigeria, making it even more favorable when economics is considered.展开更多
Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro- lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 9700 o...Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro- lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 9700 of the granules was hydrolysized with diameter between 0.15 mm and 0.3 mm at 50 ℃. When corn starch concentration increased from 100 g/L to 250 g/L, the amount of reducing sugar produced was proportional to the initial substrate concentration and no substrate inhibition phenomenon appeared. In order to study the product inhibition exactly, the product from hydrolysis reaction itself was added into the hydrolysis system at the beginning of starch hydrolysis. Product inhibition with different quantities of product added were studied in the initial several hours, during which period enzyme inactivation could be neglected and product inhibition could be studied separately. The experiments indicate that product inhibition happens when the additional quantity exceeds 9.56 g/L.展开更多
The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatme...The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatment was ineffective. Weather solid waste produced from the extraction process still contains high concentration of starch that can be used to produce high quality product, for example, bio ethanol or other alternative energy sources. Objective of these experimental work was utilizing solid waste of tapioca industries and looking for the exactly composition of n-amylase and gluco-amylase enzymes on the hydrolysis processes of the solid waste of tapioca. The exact composition from both enzymes can be expected to increase the yield of glucose. Variables of cx-amylase enzyme for this research were 0.3% (w/w) and 0.5% (w/w) with liquefaction time were 1 hour and 1.5 hours, and variables of glucoamylase enzyme were 0.3% (w/w) and 0.5% (w/w). To achieve these goals, the experimental work was held in laboratory scale with batch process. Firstly, tapioca solid waste was pretreated at 90 ~C and added u-amylase enzyme for 1 hour and 1.5 hours (variable of liquefaction time). Then, substrate was cooled down to 60 ~C added with proposed variables of glucoamylase enzyme, and was analysed 24 hours after added. This experiment showed the best ratio between a-amylase and glucoamylase enzymes 0.5%:0.5% with 1 hour of liquefaction time. The highest glucose reaches 8.468% and yields 0.892 (g glucose/g starch) with starch conversion of 59.94%. KM = 0.0468 g/mL and rmax = 0.311 g/mL·h,展开更多
基金supported by the System for Poultry Production Technology,Beijing Innovation Research Team of Modern Agriculture(BAIC04–2016)
文摘Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.
文摘Glucoamylase was immobilized onto novel porous polymer supports containing cyclic carbonate. The relationship between activity of immobilized glucoamylase and the properties of porous polymer supports was investigated. The operation stability and storage stability of immobilized glucoamylase were studied.
基金Supported by "948" Program of Agriculture Ministry of China(2011-Z09)Integrated Rural Energy Development Project of Agriculture Ministry of China(2130138-018)National Special Research Fund for Non-Profit Sectors of Institute of Crop Sciences,CAAS(2060302-13)
文摘Employing RT-PCR amplification method, the mature pepfide coding sequence of glucoamylase (amyA) gene was amplified from total RNA of Talaro- myces emersonii and the xylanase (xyrut) gene from genomic DNA ofPaenibacillus sp. H10-3. The result showed that the mature peptide sequence of amyA is 1857 bp long and encodes 618 amino acids; and the mature peptide sequence of xynA is 636 bp long and encodes 211 amino acids. Then these two genes were spliced by overlap extension PCR ( SOE-PCR), yielding fusion gene amyA-l-xynA. The fusion gene amyA-l-xynA was then cloned into a Pichia pastoris expression vector pPIC9 to produce the recombinant expression plasmid pPIC9-amyA-l-xynA. The recombinant plasmid pPICg-amyA-l-xynA was linearized and transformed into Pichia pastoris GSll5 via electric shock, yielding engineering strain ALX2. The maximum yields of glucoamylase and xylanase in ALX2 fermentation supernatant were determined as 10.7 and 51.8 U/ml, respectively.
文摘A mesophilic strain of Aspergillus niger isolated from cassava effluent samples produced extracellular glucoamylase in submerged culture containing 2% (w/v) soluble or sweet potato starch. On soluble starch medium the maximum glucoamylase activity in the culture filtrate was 9.40 U/mg compared to 8.24 U/mg on sweet potato starch culture filtrate. The mycelial dry weight for both media was 494 and 418 mg respectively. The maximum glucoamylase activity was obtained at a growth temperature of 40°C and pH 4.5. The implication is that the bioprocess of utilizing sweet potato starch in the culture is attractive due to its relatively cheaper availability in Nigeria, making it even more favorable when economics is considered.
文摘Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro- lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 9700 of the granules was hydrolysized with diameter between 0.15 mm and 0.3 mm at 50 ℃. When corn starch concentration increased from 100 g/L to 250 g/L, the amount of reducing sugar produced was proportional to the initial substrate concentration and no substrate inhibition phenomenon appeared. In order to study the product inhibition exactly, the product from hydrolysis reaction itself was added into the hydrolysis system at the beginning of starch hydrolysis. Product inhibition with different quantities of product added were studied in the initial several hours, during which period enzyme inactivation could be neglected and product inhibition could be studied separately. The experiments indicate that product inhibition happens when the additional quantity exceeds 9.56 g/L.
文摘The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatment was ineffective. Weather solid waste produced from the extraction process still contains high concentration of starch that can be used to produce high quality product, for example, bio ethanol or other alternative energy sources. Objective of these experimental work was utilizing solid waste of tapioca industries and looking for the exactly composition of n-amylase and gluco-amylase enzymes on the hydrolysis processes of the solid waste of tapioca. The exact composition from both enzymes can be expected to increase the yield of glucose. Variables of cx-amylase enzyme for this research were 0.3% (w/w) and 0.5% (w/w) with liquefaction time were 1 hour and 1.5 hours, and variables of glucoamylase enzyme were 0.3% (w/w) and 0.5% (w/w). To achieve these goals, the experimental work was held in laboratory scale with batch process. Firstly, tapioca solid waste was pretreated at 90 ~C and added u-amylase enzyme for 1 hour and 1.5 hours (variable of liquefaction time). Then, substrate was cooled down to 60 ~C added with proposed variables of glucoamylase enzyme, and was analysed 24 hours after added. This experiment showed the best ratio between a-amylase and glucoamylase enzymes 0.5%:0.5% with 1 hour of liquefaction time. The highest glucose reaches 8.468% and yields 0.892 (g glucose/g starch) with starch conversion of 59.94%. KM = 0.0468 g/mL and rmax = 0.311 g/mL·h,