A shear-wave velocity model of the crust and uppermost mantle beneath the SE Tibetan plateau was derived by inverting Rayleigh-wave group-velocity mea- surements of periods between 10 and 70 s. Rayleigh-wave group-vel...A shear-wave velocity model of the crust and uppermost mantle beneath the SE Tibetan plateau was derived by inverting Rayleigh-wave group-velocity mea- surements of periods between 10 and 70 s. Rayleigh-wave group-velocity dispersions along more than 3,000 inter- station paths were measured based on analysis of telese- ismic wavelbrm data recorded by temporary seismic stations. These observations were then utilized to construct 2D group-velocity maps in the period range of 10-70 s. Tile new group-velocity maps have an enhanced resolution compared with previous global and regional group-velocity models in this region because of the denser and more uniform data coverage. The lateral resolution across the region is about 0.5° for the periods used in this study. Local dispersion curves were then inverted for a 3D shear-wave velocity model of the region by applying a linear inversion scheme. Our 3D shear-wave model confirms the presence of low-velocity zones (LVZs) in the crust beneath the northern part of this region. Our irnaging shows that the upper-middle crustal LVZ beneath the Tengchong region is isolated from these LVZs beneath the eastern and northern part of this region. The upper-middle crustal LVZ may be regarded as evidence of a rnagma chamber in the crust beneath the Tengchong Volcanoes. Our model also reveals a slow lithospheric structure beneath Tengchong and a fast shield-like mantle beneath the stable Yangtze block.展开更多
The seismological characteristics of the 15 February 2013 Chelyabinsk bolide explosion are investigated based on seismograms recorded at 50 stations with epicentral distances ranging from 229 to 4324 km. By using 8–2...The seismological characteristics of the 15 February 2013 Chelyabinsk bolide explosion are investigated based on seismograms recorded at 50 stations with epicentral distances ranging from 229 to 4324 km. By using 8–25 s vertical-component Rayleigh waveforms,we obtain a surface-wave magnitude of 4.17±0.31 for this event. According to the relationship among the Rayleigh-wave magnitude,burst height and explosive yield, the explosion yield is estimated to be 686 kt. Using a single-force source to fit the observed Rayleigh waveforms, we obtain a single force of 1.03×10^(12) N, which is equivalent to the impact from the shock wave generated by the bolide explosion.展开更多
基金supported by the China National Special Fund for Earthquake Scientific Research in Public Interest(201008001)NSFC(41074067)
文摘A shear-wave velocity model of the crust and uppermost mantle beneath the SE Tibetan plateau was derived by inverting Rayleigh-wave group-velocity mea- surements of periods between 10 and 70 s. Rayleigh-wave group-velocity dispersions along more than 3,000 inter- station paths were measured based on analysis of telese- ismic wavelbrm data recorded by temporary seismic stations. These observations were then utilized to construct 2D group-velocity maps in the period range of 10-70 s. Tile new group-velocity maps have an enhanced resolution compared with previous global and regional group-velocity models in this region because of the denser and more uniform data coverage. The lateral resolution across the region is about 0.5° for the periods used in this study. Local dispersion curves were then inverted for a 3D shear-wave velocity model of the region by applying a linear inversion scheme. Our 3D shear-wave model confirms the presence of low-velocity zones (LVZs) in the crust beneath the northern part of this region. Our irnaging shows that the upper-middle crustal LVZ beneath the Tengchong region is isolated from these LVZs beneath the eastern and northern part of this region. The upper-middle crustal LVZ may be regarded as evidence of a rnagma chamber in the crust beneath the Tengchong Volcanoes. Our model also reveals a slow lithospheric structure beneath Tengchong and a fast shield-like mantle beneath the stable Yangtze block.
基金supported by the National Key Research and Development Program of China (grant 2017YFC0601206)the National Natural Science Foundation of China (grants 41674060 and 41630210)
文摘The seismological characteristics of the 15 February 2013 Chelyabinsk bolide explosion are investigated based on seismograms recorded at 50 stations with epicentral distances ranging from 229 to 4324 km. By using 8–25 s vertical-component Rayleigh waveforms,we obtain a surface-wave magnitude of 4.17±0.31 for this event. According to the relationship among the Rayleigh-wave magnitude,burst height and explosive yield, the explosion yield is estimated to be 686 kt. Using a single-force source to fit the observed Rayleigh waveforms, we obtain a single force of 1.03×10^(12) N, which is equivalent to the impact from the shock wave generated by the bolide explosion.