A new example of PT-symmetric quasi-exactly solvable (QES) 22×-matrix Hamiltonian which is associated to a trigonometric Razhavi potential is con-sidered. Like the QES analytic method considered in the Ref. [1] [...A new example of PT-symmetric quasi-exactly solvable (QES) 22×-matrix Hamiltonian which is associated to a trigonometric Razhavi potential is con-sidered. Like the QES analytic method considered in the Ref. [1] [2], we es-tablish three necessary and sufficient algebraic conditions for this Hamilto-nian to have a finite-dimensional invariant vector space whose generic ele-ment is polynomial. This non hermitian matrix Hamiltonian is called qua-si-exactly solvable [3].展开更多
文摘A new example of PT-symmetric quasi-exactly solvable (QES) 22×-matrix Hamiltonian which is associated to a trigonometric Razhavi potential is con-sidered. Like the QES analytic method considered in the Ref. [1] [2], we es-tablish three necessary and sufficient algebraic conditions for this Hamilto-nian to have a finite-dimensional invariant vector space whose generic ele-ment is polynomial. This non hermitian matrix Hamiltonian is called qua-si-exactly solvable [3].