The Habo alkaline intrusion, which is located in the south of the Sanjiang area, Yunnan Province, China, is a typical Cenozoic alkaline intrusion. There are a series of small to medium-sized Au and Pb-(Zn) deposits ...The Habo alkaline intrusion, which is located in the south of the Sanjiang area, Yunnan Province, China, is a typical Cenozoic alkaline intrusion. There are a series of small to medium-sized Au and Pb-(Zn) deposits around this intrusion. Those deposits are spatially associated with the Habo alkaline intrusion. (1) The δ^34S values of sulfides from Au deposits range from -1.91‰ to 2.69 ‰, which are similar to those of Pb-(Zn) deposits (-3.82 ‰ to -0.05 ‰) and both indicate a much greater contribution from magma. (2) The Habo alkaline intrusion has relatively homogeneous Pb isotopic compositions with ^206pb/^204pb ranging from 18.608 to 18.761, ^207pb/^204pb from 15.572 to 15.722 and ^20spb/^204pb from 38.599 to 39.110. These Pb isotope ratios are similar to those of Au deposits, whose ^206pb/^204pb range from 18.564 to 18.734, ^20Tpb/^20apb from 15.582 to 15.738 and ^208pb/^204pb from 38.592 to 39.319. Pb ratios in both the intrusion and Au deposits suggest that Pb mainly derived from the depth, probably represents a mixture of mantle and crust. Pb-(Zn) deposits, however, show a decentralized trait, and most of them are similar to that of the alkaline intrusion with ^206pb/^204pb ranging from 18.523 to 18.648, ^207pb/^204pb from 15.599 to 15.802, and ^20spb/^204pb from 38.659 to 39.206. (3) In the plumbotectonic diagram ^20Tpb/^204pb versus ^206pb/^204pb, almost all of Au and Pb-(Zn) deposits have the same projection area with the Habo alkaline intrusion, which indicates that those deposits almost share the same source with the alkaline intrusion. (4) Isotopic age of the Habo alkaline intrusion is 36-33 Ma, which is similar to that of Beiya, whose ore- related alkaline porphyries age is 38-31 Ma and molybdenite Re-Os age is 36.9 Ma. Therefore, along with S-Pb isotope traits, we suggest that the Habo Au and Pb-(Zn) deposits should be typically Ailaoshan-Red RiverCenozoicalkaline-related deposits and ore-forming ages of these deposits should be later than that of the Habo alkaline intrusion.展开更多
Magnetite separates from the Shaquanzi Fe-Cu deposit in the eastern Tianshan are used for Re-Os geochronological study. Re-Os data show that magnetite separates contain ca. 0.7 to 50.9 ppb Re and ca. 16 to 63 ppt Os. ...Magnetite separates from the Shaquanzi Fe-Cu deposit in the eastern Tianshan are used for Re-Os geochronological study. Re-Os data show that magnetite separates contain ca. 0.7 to 50.9 ppb Re and ca. 16 to 63 ppt Os. Eight samples yield a model 3 isochron age of (303 ±12) Ma (2or), which is within uncertainty consistent with of the Re-Os date (295±7 Ma) of associated pyrite. Tectonic evolution shows that the Late Carboniferous Aqishan-Yamansu belt was a back-arc rift. Therefore, the Re-Os age of ca. 300 Ma indicates that the Shaquanzi Fe-Cu deposit may have formed in a back-arc extensional environment and was closely related to mantle-derived magmatism. The successful application of Re-Os magnetite geochronology in the Shaquanzi Fe-Cu deposit suggests that the purity of magnetite, relatively high Re and Os contents, and the closure of Re-Os systematic are base factors for a successful Re-Os geochronology. There would be a good prospect for Re-Os geochronology for magnet- ite.展开更多
文摘The Habo alkaline intrusion, which is located in the south of the Sanjiang area, Yunnan Province, China, is a typical Cenozoic alkaline intrusion. There are a series of small to medium-sized Au and Pb-(Zn) deposits around this intrusion. Those deposits are spatially associated with the Habo alkaline intrusion. (1) The δ^34S values of sulfides from Au deposits range from -1.91‰ to 2.69 ‰, which are similar to those of Pb-(Zn) deposits (-3.82 ‰ to -0.05 ‰) and both indicate a much greater contribution from magma. (2) The Habo alkaline intrusion has relatively homogeneous Pb isotopic compositions with ^206pb/^204pb ranging from 18.608 to 18.761, ^207pb/^204pb from 15.572 to 15.722 and ^20spb/^204pb from 38.599 to 39.110. These Pb isotope ratios are similar to those of Au deposits, whose ^206pb/^204pb range from 18.564 to 18.734, ^20Tpb/^20apb from 15.582 to 15.738 and ^208pb/^204pb from 38.592 to 39.319. Pb ratios in both the intrusion and Au deposits suggest that Pb mainly derived from the depth, probably represents a mixture of mantle and crust. Pb-(Zn) deposits, however, show a decentralized trait, and most of them are similar to that of the alkaline intrusion with ^206pb/^204pb ranging from 18.523 to 18.648, ^207pb/^204pb from 15.599 to 15.802, and ^20spb/^204pb from 38.659 to 39.206. (3) In the plumbotectonic diagram ^20Tpb/^204pb versus ^206pb/^204pb, almost all of Au and Pb-(Zn) deposits have the same projection area with the Habo alkaline intrusion, which indicates that those deposits almost share the same source with the alkaline intrusion. (4) Isotopic age of the Habo alkaline intrusion is 36-33 Ma, which is similar to that of Beiya, whose ore- related alkaline porphyries age is 38-31 Ma and molybdenite Re-Os age is 36.9 Ma. Therefore, along with S-Pb isotope traits, we suggest that the Habo Au and Pb-(Zn) deposits should be typically Ailaoshan-Red RiverCenozoicalkaline-related deposits and ore-forming ages of these deposits should be later than that of the Habo alkaline intrusion.
基金financially supported by the National Basic Research Program of China(Grant No.2012CB416804)the ‘‘CAS Hundred Talents’’ Project from the Chinese Academy of Sciences(Grant No.KZCX2-YW-BR-09)to Qi Liang
文摘Magnetite separates from the Shaquanzi Fe-Cu deposit in the eastern Tianshan are used for Re-Os geochronological study. Re-Os data show that magnetite separates contain ca. 0.7 to 50.9 ppb Re and ca. 16 to 63 ppt Os. Eight samples yield a model 3 isochron age of (303 ±12) Ma (2or), which is within uncertainty consistent with of the Re-Os date (295±7 Ma) of associated pyrite. Tectonic evolution shows that the Late Carboniferous Aqishan-Yamansu belt was a back-arc rift. Therefore, the Re-Os age of ca. 300 Ma indicates that the Shaquanzi Fe-Cu deposit may have formed in a back-arc extensional environment and was closely related to mantle-derived magmatism. The successful application of Re-Os magnetite geochronology in the Shaquanzi Fe-Cu deposit suggests that the purity of magnetite, relatively high Re and Os contents, and the closure of Re-Os systematic are base factors for a successful Re-Os geochronology. There would be a good prospect for Re-Os geochronology for magnet- ite.