Binary Mg-Gd (up to 5% Gd in mass fraction), Mg-Nd (up to 9% Nd in mass fraction) and ternary Mg-Gd-Y (up to 5% Gd, 1% Y) alloys with precisely determined contents of cathodic impurities (Fe, Ni, Cu, Co) were ...Binary Mg-Gd (up to 5% Gd in mass fraction), Mg-Nd (up to 9% Nd in mass fraction) and ternary Mg-Gd-Y (up to 5% Gd, 1% Y) alloys with precisely determined contents of cathodic impurities (Fe, Ni, Cu, Co) were studied. The alloys were studied in the as-cast state (cooling rate of 500 K/min) and after solution heat treatment (T4). Structures were investigated by optical and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and glow discharge spectrometry. Structural investigation was completed by Vickers hardness measurements. Corrosion behavior in the simulated physiological solution (9 g/L NaCl) was assessed by immersion tests and potentiodynamic measurements. It was found that the structures of the as-cast alloys were dominated by fine a-Mg dendrites and eutectic Mg-RE phases. The dendrites exhibited RE-concentration gradients which were most pronounced in the Mg-Gd alloys. For this reason, the T4 heat treatment of the Mg-Gd alloy led to the formation of a new cuboidal Mg5Gd phase. The corrosion resistance was significantly improved by Gd. The effect of Nd was weak and the addition of Y to Mg-Gd alloys had harmful effect on the corrosion resistance. The T4 heat treatment strongly accelerated the corrosion of Mg-Gd alloys. Its effect on the corrosion of Mg-Nd alloys was not significant. The observed corrosion behavior of the alloys was discussed in relation to their structural states and contents of cathodic impurities.展开更多
The solidification microstructures and hardness of Mg-2%Zn (mass fraction) based alloys with addition of 0.4%Ce, 0.4%Gd, 0.4%Y or 0.4%Nd (mass fraction) were investigated, and the effects of the rare earth elements on...The solidification microstructures and hardness of Mg-2%Zn (mass fraction) based alloys with addition of 0.4%Ce, 0.4%Gd, 0.4%Y or 0.4%Nd (mass fraction) were investigated, and the effects of the rare earth elements on the microstructures and mechanical properties of these alloys extruded at 310℃ were also compared. The results indicate that the trace rare earth Ce, Gd, Y or Nd in the Mg-2%Zn alloy has obviously different grain refinement effects on its solidification microstructures, and the as-cast and hot-extruded alloy with 0.4%Ce has the smallest average grain size and the highest strength. However, the extruded alloys containing 0.4%Nd or 0.4%Y with the elongation of 26.6% and 30%, respectively, show higher plasticity in spite of lower strength as compared with the alloy containing 0.4%Ce.展开更多
基金the Czech Science Foundation (P108/12/G043)the Academy of Sciences of the Czech Republic(KAN300100801)for the financial support
文摘Binary Mg-Gd (up to 5% Gd in mass fraction), Mg-Nd (up to 9% Nd in mass fraction) and ternary Mg-Gd-Y (up to 5% Gd, 1% Y) alloys with precisely determined contents of cathodic impurities (Fe, Ni, Cu, Co) were studied. The alloys were studied in the as-cast state (cooling rate of 500 K/min) and after solution heat treatment (T4). Structures were investigated by optical and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and glow discharge spectrometry. Structural investigation was completed by Vickers hardness measurements. Corrosion behavior in the simulated physiological solution (9 g/L NaCl) was assessed by immersion tests and potentiodynamic measurements. It was found that the structures of the as-cast alloys were dominated by fine a-Mg dendrites and eutectic Mg-RE phases. The dendrites exhibited RE-concentration gradients which were most pronounced in the Mg-Gd alloys. For this reason, the T4 heat treatment of the Mg-Gd alloy led to the formation of a new cuboidal Mg5Gd phase. The corrosion resistance was significantly improved by Gd. The effect of Nd was weak and the addition of Y to Mg-Gd alloys had harmful effect on the corrosion resistance. The T4 heat treatment strongly accelerated the corrosion of Mg-Gd alloys. Its effect on the corrosion of Mg-Nd alloys was not significant. The observed corrosion behavior of the alloys was discussed in relation to their structural states and contents of cathodic impurities.
基金Projects(2007CB613701 2007CB613702) supported by the National Basic Research Program of China+2 种基金Project(NCET-08-0098) supported by the Program for New Century Excellent Talents in UniversityProject(50974037) supported by the National Natural Science Foundation of ChinaProject(90209002) supported by the Special Fund for Basic Scientific Research of Central Colleges in China
文摘The solidification microstructures and hardness of Mg-2%Zn (mass fraction) based alloys with addition of 0.4%Ce, 0.4%Gd, 0.4%Y or 0.4%Nd (mass fraction) were investigated, and the effects of the rare earth elements on the microstructures and mechanical properties of these alloys extruded at 310℃ were also compared. The results indicate that the trace rare earth Ce, Gd, Y or Nd in the Mg-2%Zn alloy has obviously different grain refinement effects on its solidification microstructures, and the as-cast and hot-extruded alloy with 0.4%Ce has the smallest average grain size and the highest strength. However, the extruded alloys containing 0.4%Nd or 0.4%Y with the elongation of 26.6% and 30%, respectively, show higher plasticity in spite of lower strength as compared with the alloy containing 0.4%Ce.