Cities ability reducing earthquake disasters is a complex system involving numerous factors, moreover the re-search on evaluating cities ability reducing earthquake disasters relates to multi-subject, such as earthqua...Cities ability reducing earthquake disasters is a complex system involving numerous factors, moreover the re-search on evaluating cities ability reducing earthquake disasters relates to multi-subject, such as earthquake sci-ence, social science, economical science and so on. In this paper, firstly, the conception of cities ability reducing earthquake disasters is presented, and the ability could be evaluated with three basic elements the possible seis-mic casualty and economic loss during the future earthquakes that are likely to occur in the city and its surround-ings and time required for recovery after earthquake; based upon these three basic elements, a framework, which consists of six main components, for evaluating citys ability reducing earthquake disasters is proposed; then the statistical relations between the index system and the ratio of seismic casualty, the ratio of economic loss and re-covery time are gained utilizing the cities prediction results of earthquake disasters which were made during the ninth five-year plan; at last, the method defining the comprehensive index of cities ability reducing earthquake disasters is presented. Thus the relatively comprehensive theory frame is set up. The frame can evaluate cities ability reducing earthquake disasters absolutely and quantitatively and consequently instruct the decision-making on reducing cities earthquake disasters loss.展开更多
Due to water scarcity and the global trends in climate change, winning drinking </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span ...Due to water scarcity and the global trends in climate change, winning drinking </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">water through desalination is increasingly becoming an option, especially using reverse osmosis (RO) membrane technology. Operating a reverse osmosis desalination plant is associated with several expenses and energy consumption </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">take a very large share. Several studies have shown that wind power incurs lower energy costs compared to other renewable energy sources, therefore, should be the first choice to be coupled to an RO desalination system to clean water using sustainable energy. Therefore, in this </span><span style="font-family:Verdana;">paper</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we investigate the feasibility of driving a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">n</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> RO desalination system using wind power with and without pressure vessel energy storage and small scale energy recovery us</span><span><span style="font-family:Verdana;">ing </span><span style="font-family:Verdana;">Clark</span><span style="font-family:Verdana;"> pump based on simulation models. The performance of both variants </span><span style="font-family:Verdana;">w</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> compared </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">with</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> several scenarios of wind patterns. As expected buffering and energy recovery delivered higher water production </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">and better water quality demonstrating the importance of an energy storage/recovery system for a wind-power-supplied desalination plant.展开更多
Dropped pronouns (DPs) are ubiquitous in pro-drop languages like Chinese, Japanese etc. Previous work mainly focused on painstakingly exploring the empirical features for DPs recovery. In this paper, we propose a neur...Dropped pronouns (DPs) are ubiquitous in pro-drop languages like Chinese, Japanese etc. Previous work mainly focused on painstakingly exploring the empirical features for DPs recovery. In this paper, we propose a neural recovery machine (NRM) to model and recover DPs in Chinese to avoid the non-trivial feature engineering process. The experimental results show that the proposed NRM significantly outperforms the state-of-the-art approaches on two heterogeneous datasets. Further experimental results of Chinese zero pronoun (ZP) resolution show that the performance of ZP resolution can also be improved by recovering the ZPs to DPs.展开更多
文摘Cities ability reducing earthquake disasters is a complex system involving numerous factors, moreover the re-search on evaluating cities ability reducing earthquake disasters relates to multi-subject, such as earthquake sci-ence, social science, economical science and so on. In this paper, firstly, the conception of cities ability reducing earthquake disasters is presented, and the ability could be evaluated with three basic elements the possible seis-mic casualty and economic loss during the future earthquakes that are likely to occur in the city and its surround-ings and time required for recovery after earthquake; based upon these three basic elements, a framework, which consists of six main components, for evaluating citys ability reducing earthquake disasters is proposed; then the statistical relations between the index system and the ratio of seismic casualty, the ratio of economic loss and re-covery time are gained utilizing the cities prediction results of earthquake disasters which were made during the ninth five-year plan; at last, the method defining the comprehensive index of cities ability reducing earthquake disasters is presented. Thus the relatively comprehensive theory frame is set up. The frame can evaluate cities ability reducing earthquake disasters absolutely and quantitatively and consequently instruct the decision-making on reducing cities earthquake disasters loss.
文摘Due to water scarcity and the global trends in climate change, winning drinking </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">water through desalination is increasingly becoming an option, especially using reverse osmosis (RO) membrane technology. Operating a reverse osmosis desalination plant is associated with several expenses and energy consumption </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">take a very large share. Several studies have shown that wind power incurs lower energy costs compared to other renewable energy sources, therefore, should be the first choice to be coupled to an RO desalination system to clean water using sustainable energy. Therefore, in this </span><span style="font-family:Verdana;">paper</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we investigate the feasibility of driving a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">n</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> RO desalination system using wind power with and without pressure vessel energy storage and small scale energy recovery us</span><span><span style="font-family:Verdana;">ing </span><span style="font-family:Verdana;">Clark</span><span style="font-family:Verdana;"> pump based on simulation models. The performance of both variants </span><span style="font-family:Verdana;">w</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> compared </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">with</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> several scenarios of wind patterns. As expected buffering and energy recovery delivered higher water production </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">and better water quality demonstrating the importance of an energy storage/recovery system for a wind-power-supplied desalination plant.
基金This paper was supported by the National Natural Science Foundation of China (Grant Nos. 61502120, 61472105, 61772153)Heilongjiang philosophy and social science research project (16TQD03)+1 种基金Young research foundation of Harbin University (HUYF2013-002)the project of university library work committee of Heilongjiang (2013-B-065).
文摘Dropped pronouns (DPs) are ubiquitous in pro-drop languages like Chinese, Japanese etc. Previous work mainly focused on painstakingly exploring the empirical features for DPs recovery. In this paper, we propose a neural recovery machine (NRM) to model and recover DPs in Chinese to avoid the non-trivial feature engineering process. The experimental results show that the proposed NRM significantly outperforms the state-of-the-art approaches on two heterogeneous datasets. Further experimental results of Chinese zero pronoun (ZP) resolution show that the performance of ZP resolution can also be improved by recovering the ZPs to DPs.