Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro...Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme.展开更多
Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,...Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,despite using an expensive high-end server.Heterogeneous computing,a combination of the Field Programmable Gate Array(FPGA)and a computer,is proposed as a solution to compute MD simulation efficiently.In such heterogeneous computation,communication between FPGA and Computer is necessary.One such MD simulation,explained in the paper,is the(Artificial Neural Network)ANN-based IAP computation of gold(Au_(147)&Au_(309))nanoparticles.MD simulation calculates the forces between atoms and the total energy of the chemical system.This work proposes the novel design and implementation of an ANN IAP-based MD simulation for Au_(147)&Au_(309) using communication protocols,such as Universal Asynchronous Receiver-Transmitter(UART)and Ethernet,for communication between the FPGA and the host computer.To improve the latency of MD simulation through heterogeneous computing,Universal Asynchronous Receiver-Transmitter(UART)and Ethernet communication protocols were explored to conduct MD simulation of 50,000 cycles.In this study,computation times of 17.54 and 18.70 h were achieved with UART and Ethernet,respectively,compared to the conventional server time of 29 h for Au_(147) nanoparticles.The results pave the way for the development of a Lab-on-a-chip application.展开更多
With the development of computer vision researches, due to the state-of-the-art performance on image and video processing tasks, deep neural network (DNN) has been widely applied in various applications (autonomous ve...With the development of computer vision researches, due to the state-of-the-art performance on image and video processing tasks, deep neural network (DNN) has been widely applied in various applications (autonomous vehicles, weather forecasting, counter-terrorism, surveillance, traffic management, etc.). However, to achieve such performance, DNN models have become increasingly complicated and deeper, and result in heavy computational stress. Thus, it is not sufficient for the general central processing unit (CPU) processors to meet the real-time application requirements. To deal with this bottleneck, research based on hardware acceleration solution for DNN attracts great attention. Specifically, to meet various real-life applications, DNN acceleration solutions mainly focus on issue of hardware acceleration with intense memory and calculation resource. In this paper, a novel resource-saving architecture based on Field Programmable Gate Array (FPGA) is proposed. Due to the novel designed processing element (PE), the proposed architecture </span><span style="font-family:Verdana;">achieves good performance with the extremely limited calculating resource. The on-chip buffer allocation helps enhance resource-saving performance on memory. Moreover, the accelerator improves its performance by exploiting</span> <span style="font-family:Verdana;">the sparsity property of the input feature map. Compared to other state-of-the-art</span><span style="font-family:Verdana;"> solutions based on FPGA, our architecture achieves good performance, with quite limited resource consumption, thus fully meet the requirement of real-time applications.展开更多
The Monte Carlo(MC)simulation is regarded as the gold standard for dose calculation in brachytherapy,but it consumes a large amount of computing resources.The development of heterogeneous computing makes it possible t...The Monte Carlo(MC)simulation is regarded as the gold standard for dose calculation in brachytherapy,but it consumes a large amount of computing resources.The development of heterogeneous computing makes it possible to substantially accelerate calculations with hardware accelerators.Accordingly,this study develops a fast MC tool,called THUBrachy,which can be accelerated by several types of hardware accelerators.THUBrachy can simulate photons with energy less than 3 MeV and considers all photon interactions in the energy range.It was benchmarked against the American Association of Physicists in Medicine Task Group No.43 Report using a water phantom and validated with Geant4 using a clinical case.A performance test was conducted using the clinical case,showing that a multicore central processing unit,Intel Xeon Phi,and graphics processing unit(GPU)can efficiently accelerate the simulation.GPU-accelerated THUBrachy is the fastest version,which is 200 times faster than the serial version and approximately 500 times faster than Geant4.The proposed tool shows great potential for fast and accurate dose calculations in clinical applications.展开更多
Nowadays, from home monitoring to large airport security, a lot of digital video surveillance systems have been used. Digital surveillance system usually requires streaming video processing abilities. As an advanced v...Nowadays, from home monitoring to large airport security, a lot of digital video surveillance systems have been used. Digital surveillance system usually requires streaming video processing abilities. As an advanced video coding method, H.264 is introduced to reduce the large video data dramatically (usually by 70X or more). However, computational overhead occurs when coding and decoding H.264 video. In this paper, a System-on-a-Chip (SoC) based hardware acceleration solution for video codec is proposed, which can also be used for other software applications. The characteristics of the video codec are analyzed by using the profiling tool. The Hadamard function, which is the bottleneck of H.264, is identified not only by execution time but also another two attributes, such as cycle per loop and loop round. The Co-processor approach is applied to accelerate the Hadamard function by transforming it to hardware. Performance improvement, resource costs and energy consumption are compared and analyzed. Experimental results indicate that 76.5% energy deduction and 8.09X speedup can be reached after balancing these three key factors.展开更多
An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network c...An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved.展开更多
Convolutional Neural Networks(CNNs)are widely used in many fields.Due to their high throughput and high level of computing characteristics,however,an increasing number of researchers are focusing on how to improve the...Convolutional Neural Networks(CNNs)are widely used in many fields.Due to their high throughput and high level of computing characteristics,however,an increasing number of researchers are focusing on how to improve the computational efficiency,hardware utilization,or flexibility of CNN hardware accelerators.Accordingly,this paper proposes a dynamically reconfigurable accelerator architecture that implements a Sparse-Winograd F(2×2.3×3)-based high-parallelism hardware architecture.This approach not only eliminates the pre-calculation complexity associated with the Winograd algorithm,thereby reducing the difficulty of hardware implementation,but also greatly improves the flexibility of the hardware;as a result,the accelerator can realize the calculation of Conventional Convolution,Grouped Convolution(GCONV)or Depthwise Separable Convolution(DSC)using the same hardware architecture.Our experimental results show that the accelerator achieves a 3x–4.14x speedup compared with the designs that do not use the acceleration algorithm on VGG-16 and MobileNet V1.Moreover,compared with previous designs using the traditional Winograd algorithm,the accelerator design achieves 1.4x–1.8x speedup.At the same time,the efficiency of the multiplier improves by up to 142%.展开更多
This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Te...This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Technology (MNIST) database. We also propose a novel hardware-friendly activation function called the dynamic Rectifid Linear Unit (ReLU)—D-ReLU function that achieves higher performance than traditional activation functions at no cost to accuracy. We built a 2-layer online training multilayer perceptron (MLP) neural network on an FPGA with varying data width. Reducing the data width from 8 to 4 bits only reduces prediction accuracy by 11%, but the FPGA area decreases by 41%. Compared to networks that use the sigmoid functions, our proposed D-ReLU function uses 24% - 41% less area with no loss to prediction accuracy. Further reducing the data width of the 3-layer networks from 8 to 4 bits, the prediction accuracies only decrease by 3% - 5%, with area being reduced by 9% - 28%. Moreover, FPGA solutions have 29 times faster execution time, even despite running at a 60× lower clock rate. Thus, FPGA implementations of neural networks offer a high-performance, low power alternative to traditional software methods, and our novel D-ReLU activation function offers additional improvements to performance and power saving.展开更多
Moving object detection including background subtraction and morphological processing is a critical research topic for video surveillance because of its high computational loading and power consumption. This paper pro...Moving object detection including background subtraction and morphological processing is a critical research topic for video surveillance because of its high computational loading and power consumption. This paper proposes a hardware design to accelerate the computation of background subtraction with low power consumption. A real-time background subtraction method is designed with a frame-buffer scheme and function partition to improve throughput, and implemented using Verilog HDL on FPGA. The design parallelizes the computations of background update and subtraction with a seven-stage pipeline. A stripe-based morphological processing and accounting for the completion of detected objects is devised. Simulation results for videos of VGA resolutions on a low-end FPGA device show 368 fps throughput for only the real-time background subtraction module, and 51 fps for the whole system, including off-chip memory access. Real-time efficiency with low power consumption and low resource utilization is thus demonstrated.展开更多
基金This work was supported by Open Fund Project of State Key Laboratory of Intelligent Vehicle Safety Technology by Grant with No.IVSTSKL-202311Key Projects of Science and Technology Research Programme of Chongqing Municipal Education Commission by Grant with No.KJZD-K202301505+1 种基金Cooperation Project between Chongqing Municipal Undergraduate Universities and Institutes Affiliated to the Chinese Academy of Sciences in 2021 by Grant with No.HZ2021015Chongqing Graduate Student Research Innovation Program by Grant with No.CYS240801.
文摘Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme.
文摘Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,despite using an expensive high-end server.Heterogeneous computing,a combination of the Field Programmable Gate Array(FPGA)and a computer,is proposed as a solution to compute MD simulation efficiently.In such heterogeneous computation,communication between FPGA and Computer is necessary.One such MD simulation,explained in the paper,is the(Artificial Neural Network)ANN-based IAP computation of gold(Au_(147)&Au_(309))nanoparticles.MD simulation calculates the forces between atoms and the total energy of the chemical system.This work proposes the novel design and implementation of an ANN IAP-based MD simulation for Au_(147)&Au_(309) using communication protocols,such as Universal Asynchronous Receiver-Transmitter(UART)and Ethernet,for communication between the FPGA and the host computer.To improve the latency of MD simulation through heterogeneous computing,Universal Asynchronous Receiver-Transmitter(UART)and Ethernet communication protocols were explored to conduct MD simulation of 50,000 cycles.In this study,computation times of 17.54 and 18.70 h were achieved with UART and Ethernet,respectively,compared to the conventional server time of 29 h for Au_(147) nanoparticles.The results pave the way for the development of a Lab-on-a-chip application.
文摘With the development of computer vision researches, due to the state-of-the-art performance on image and video processing tasks, deep neural network (DNN) has been widely applied in various applications (autonomous vehicles, weather forecasting, counter-terrorism, surveillance, traffic management, etc.). However, to achieve such performance, DNN models have become increasingly complicated and deeper, and result in heavy computational stress. Thus, it is not sufficient for the general central processing unit (CPU) processors to meet the real-time application requirements. To deal with this bottleneck, research based on hardware acceleration solution for DNN attracts great attention. Specifically, to meet various real-life applications, DNN acceleration solutions mainly focus on issue of hardware acceleration with intense memory and calculation resource. In this paper, a novel resource-saving architecture based on Field Programmable Gate Array (FPGA) is proposed. Due to the novel designed processing element (PE), the proposed architecture </span><span style="font-family:Verdana;">achieves good performance with the extremely limited calculating resource. The on-chip buffer allocation helps enhance resource-saving performance on memory. Moreover, the accelerator improves its performance by exploiting</span> <span style="font-family:Verdana;">the sparsity property of the input feature map. Compared to other state-of-the-art</span><span style="font-family:Verdana;"> solutions based on FPGA, our architecture achieves good performance, with quite limited resource consumption, thus fully meet the requirement of real-time applications.
基金supported by the National Natural Science Foundation of China(No.11875036)。
文摘The Monte Carlo(MC)simulation is regarded as the gold standard for dose calculation in brachytherapy,but it consumes a large amount of computing resources.The development of heterogeneous computing makes it possible to substantially accelerate calculations with hardware accelerators.Accordingly,this study develops a fast MC tool,called THUBrachy,which can be accelerated by several types of hardware accelerators.THUBrachy can simulate photons with energy less than 3 MeV and considers all photon interactions in the energy range.It was benchmarked against the American Association of Physicists in Medicine Task Group No.43 Report using a water phantom and validated with Geant4 using a clinical case.A performance test was conducted using the clinical case,showing that a multicore central processing unit,Intel Xeon Phi,and graphics processing unit(GPU)can efficiently accelerate the simulation.GPU-accelerated THUBrachy is the fastest version,which is 200 times faster than the serial version and approximately 500 times faster than Geant4.The proposed tool shows great potential for fast and accurate dose calculations in clinical applications.
文摘Nowadays, from home monitoring to large airport security, a lot of digital video surveillance systems have been used. Digital surveillance system usually requires streaming video processing abilities. As an advanced video coding method, H.264 is introduced to reduce the large video data dramatically (usually by 70X or more). However, computational overhead occurs when coding and decoding H.264 video. In this paper, a System-on-a-Chip (SoC) based hardware acceleration solution for video codec is proposed, which can also be used for other software applications. The characteristics of the video codec are analyzed by using the profiling tool. The Hadamard function, which is the bottleneck of H.264, is identified not only by execution time but also another two attributes, such as cycle per loop and loop round. The Co-processor approach is applied to accelerate the Hadamard function by transforming it to hardware. Performance improvement, resource costs and energy consumption are compared and analyzed. Experimental results indicate that 76.5% energy deduction and 8.09X speedup can be reached after balancing these three key factors.
基金the special fund of the Education Department of Henan Provice
文摘An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved.
基金the Hunan Provincial Science and Technology Plan Project.The specific grant number is 2018XK2102.
文摘Convolutional Neural Networks(CNNs)are widely used in many fields.Due to their high throughput and high level of computing characteristics,however,an increasing number of researchers are focusing on how to improve the computational efficiency,hardware utilization,or flexibility of CNN hardware accelerators.Accordingly,this paper proposes a dynamically reconfigurable accelerator architecture that implements a Sparse-Winograd F(2×2.3×3)-based high-parallelism hardware architecture.This approach not only eliminates the pre-calculation complexity associated with the Winograd algorithm,thereby reducing the difficulty of hardware implementation,but also greatly improves the flexibility of the hardware;as a result,the accelerator can realize the calculation of Conventional Convolution,Grouped Convolution(GCONV)or Depthwise Separable Convolution(DSC)using the same hardware architecture.Our experimental results show that the accelerator achieves a 3x–4.14x speedup compared with the designs that do not use the acceleration algorithm on VGG-16 and MobileNet V1.Moreover,compared with previous designs using the traditional Winograd algorithm,the accelerator design achieves 1.4x–1.8x speedup.At the same time,the efficiency of the multiplier improves by up to 142%.
文摘This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Technology (MNIST) database. We also propose a novel hardware-friendly activation function called the dynamic Rectifid Linear Unit (ReLU)—D-ReLU function that achieves higher performance than traditional activation functions at no cost to accuracy. We built a 2-layer online training multilayer perceptron (MLP) neural network on an FPGA with varying data width. Reducing the data width from 8 to 4 bits only reduces prediction accuracy by 11%, but the FPGA area decreases by 41%. Compared to networks that use the sigmoid functions, our proposed D-ReLU function uses 24% - 41% less area with no loss to prediction accuracy. Further reducing the data width of the 3-layer networks from 8 to 4 bits, the prediction accuracies only decrease by 3% - 5%, with area being reduced by 9% - 28%. Moreover, FPGA solutions have 29 times faster execution time, even despite running at a 60× lower clock rate. Thus, FPGA implementations of neural networks offer a high-performance, low power alternative to traditional software methods, and our novel D-ReLU activation function offers additional improvements to performance and power saving.
文摘Moving object detection including background subtraction and morphological processing is a critical research topic for video surveillance because of its high computational loading and power consumption. This paper proposes a hardware design to accelerate the computation of background subtraction with low power consumption. A real-time background subtraction method is designed with a frame-buffer scheme and function partition to improve throughput, and implemented using Verilog HDL on FPGA. The design parallelizes the computations of background update and subtraction with a seven-stage pipeline. A stripe-based morphological processing and accounting for the completion of detected objects is devised. Simulation results for videos of VGA resolutions on a low-end FPGA device show 368 fps throughput for only the real-time background subtraction module, and 51 fps for the whole system, including off-chip memory access. Real-time efficiency with low power consumption and low resource utilization is thus demonstrated.