Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitab...Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitable internal uncertainties and external disturbances in practice, this inherent nonlinear character always hinders space vehicles autopilot from pursuing precise tracking performance. Compared to most of pre-existing methodologies that passively suppress the uncertainties and disturbances, a design based on predictive functional control(PFC) and generalized extended state observer(GESO) is firstly proposed for three-axis RCS control system to actively reject that with no requirement for additional fuel consumption. To obtain a high fidelity predictive model on which the performance of PFC greatly depends, the nonlinear coupling multiple-input multiple-output(MIMO) flight dynamics model is parameterized as a state-dependent coefficient form. And based on that, a MIMO PFC algorithm in state space domain for a plant of arbitrary orders is deduced in this paper.The internal uncertainties and external disturbances are lumped as a total disturbance, which is estimated and cancelled timely to further enhance the robustness. The continuous control command synthesised by above controller-rejector tandem is finally modulated by pulse width pulse frequency modulator(PWPF) to on-off signals to meet RCS requirement. The robustness and feasibility of the proposed design are validated by a series of performance comparison simulations with some prominent methods in the presence of significant perturbations and disturbances, as well as measurement noise.展开更多
Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has develop...Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.展开更多
临近空间飞行器在稀-稠大气过渡阶段且反推力矢量装置(Reaction Control System,RCS)有剩余燃料的情况下,RCS对于非冗余舵面的故障补偿与在线重构具有重要意义。基于此,研究了针对非冗余舵面与RCS复合故障的自愈控制方法,以实现飞行器...临近空间飞行器在稀-稠大气过渡阶段且反推力矢量装置(Reaction Control System,RCS)有剩余燃料的情况下,RCS对于非冗余舵面的故障补偿与在线重构具有重要意义。基于此,研究了针对非冗余舵面与RCS复合故障的自愈控制方法,以实现飞行器的安全可靠控制。首先,建立了执行机构故障等不确定影响下的姿态控制模型;其次,针对舵面故障给出了基于残差观测的故障检测与自诊断方法,设计了RCS与舵面复合故障的分离诊断策略;然后,基于非线性比例-微分控制及故障诊断信息,设计了舵面故障补偿的自愈控制器;同时,基于RCS故障喷管序列判定,设计了复合故障下RCS在线重构的自愈控制器。最后,通过某典型全弹道姿态跟踪数值仿真,验证了该方法的有效性及可靠性。展开更多
针对RLV(Reusable Launch Vehicle)的再入控制提出了一种基于模糊逻辑的RCS(Reaction Control System).详细分析了RCS控制特性,建立了基于效率系数以及继电特性的RCS模型,提出了一种基于Mamdani模型的模糊逻辑三通道RCS控制器,该控制器...针对RLV(Reusable Launch Vehicle)的再入控制提出了一种基于模糊逻辑的RCS(Reaction Control System).详细分析了RCS控制特性,建立了基于效率系数以及继电特性的RCS模型,提出了一种基于Mamdani模型的模糊逻辑三通道RCS控制器,该控制器利用专家控制经验,根据姿态角及角速率的偏差,产生不同的RCS控制指令输出给三通道对飞行器进行姿态控制.通过六自由度非线性仿真,验证了该控制系统与PID(Proportional-Integral-D ifferential)控制器相比具有更好的跟踪性能,且RCS的控制输出效率也更高.展开更多
以航天飞机为例,论述了跨大气层飞行器反推力控制系统(R eaction Con trol System,RCS)的工作原理,并给出了RCS推进器的控制模型。同时分析了RCS在回路中的各种工作模式和多推进器的系统冗余及其组合方式。最后在对RCS系统操作的基础上...以航天飞机为例,论述了跨大气层飞行器反推力控制系统(R eaction Con trol System,RCS)的工作原理,并给出了RCS推进器的控制模型。同时分析了RCS在回路中的各种工作模式和多推进器的系统冗余及其组合方式。最后在对RCS系统操作的基础上,研究了航天飞机在再入段飞行时的RCS控制问题。展开更多
为满足反作用控制系统(reaction control system,RCS)姿态控制需求,对高超声速飞行器再入段的姿态控制进行研究。以X-34的RCS系统为对象,建立了RCS的数字模型,设计了RCS姿态控制率与PWPE脉冲调制器,利用非线性描述函数法分析姿态控制系...为满足反作用控制系统(reaction control system,RCS)姿态控制需求,对高超声速飞行器再入段的姿态控制进行研究。以X-34的RCS系统为对象,建立了RCS的数字模型,设计了RCS姿态控制率与PWPE脉冲调制器,利用非线性描述函数法分析姿态控制系统的稳定性,并通过Matlab仿真验证了所设计的RCS姿态控制系统性能。仿真结果表明:该PWPF脉冲调制可以满足RCS姿态控制的需要,同时与传统的PWM脉冲调制相比,可以较大地降低RCS消耗的流量与开启次数,可为高超声速飞行器再入段RCS姿态控制系统设计提供参考。展开更多
文摘Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitable internal uncertainties and external disturbances in practice, this inherent nonlinear character always hinders space vehicles autopilot from pursuing precise tracking performance. Compared to most of pre-existing methodologies that passively suppress the uncertainties and disturbances, a design based on predictive functional control(PFC) and generalized extended state observer(GESO) is firstly proposed for three-axis RCS control system to actively reject that with no requirement for additional fuel consumption. To obtain a high fidelity predictive model on which the performance of PFC greatly depends, the nonlinear coupling multiple-input multiple-output(MIMO) flight dynamics model is parameterized as a state-dependent coefficient form. And based on that, a MIMO PFC algorithm in state space domain for a plant of arbitrary orders is deduced in this paper.The internal uncertainties and external disturbances are lumped as a total disturbance, which is estimated and cancelled timely to further enhance the robustness. The continuous control command synthesised by above controller-rejector tandem is finally modulated by pulse width pulse frequency modulator(PWPF) to on-off signals to meet RCS requirement. The robustness and feasibility of the proposed design are validated by a series of performance comparison simulations with some prominent methods in the presence of significant perturbations and disturbances, as well as measurement noise.
文摘Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.
文摘临近空间飞行器在稀-稠大气过渡阶段且反推力矢量装置(Reaction Control System,RCS)有剩余燃料的情况下,RCS对于非冗余舵面的故障补偿与在线重构具有重要意义。基于此,研究了针对非冗余舵面与RCS复合故障的自愈控制方法,以实现飞行器的安全可靠控制。首先,建立了执行机构故障等不确定影响下的姿态控制模型;其次,针对舵面故障给出了基于残差观测的故障检测与自诊断方法,设计了RCS与舵面复合故障的分离诊断策略;然后,基于非线性比例-微分控制及故障诊断信息,设计了舵面故障补偿的自愈控制器;同时,基于RCS故障喷管序列判定,设计了复合故障下RCS在线重构的自愈控制器。最后,通过某典型全弹道姿态跟踪数值仿真,验证了该方法的有效性及可靠性。
文摘以航天飞机为例,论述了跨大气层飞行器反推力控制系统(R eaction Con trol System,RCS)的工作原理,并给出了RCS推进器的控制模型。同时分析了RCS在回路中的各种工作模式和多推进器的系统冗余及其组合方式。最后在对RCS系统操作的基础上,研究了航天飞机在再入段飞行时的RCS控制问题。
文摘为满足反作用控制系统(reaction control system,RCS)姿态控制需求,对高超声速飞行器再入段的姿态控制进行研究。以X-34的RCS系统为对象,建立了RCS的数字模型,设计了RCS姿态控制率与PWPE脉冲调制器,利用非线性描述函数法分析姿态控制系统的稳定性,并通过Matlab仿真验证了所设计的RCS姿态控制系统性能。仿真结果表明:该PWPF脉冲调制可以满足RCS姿态控制的需要,同时与传统的PWM脉冲调制相比,可以较大地降低RCS消耗的流量与开启次数,可为高超声速飞行器再入段RCS姿态控制系统设计提供参考。