The selectivity behaviour of ion exchange resin Amberlite IR-120 for inorganic cations like sodium and potassium was predicted on the basis of thermodynamic data. The equilibrium constant K values calculated for uni-u...The selectivity behaviour of ion exchange resin Amberlite IR-120 for inorganic cations like sodium and potassium was predicted on the basis of thermodynamic data. The equilibrium constant K values calculated for uni-univalent ion exchange reaction systems were observed to increase with rise in temperature, indicating endothermic ion exchange reactions. From the K values calculated at different temperatures the enthalpy values were calculated. The low enthalpy and higher K values for K+ ion ex-change reaction indicates more affinity of the resin for potassium ions as compared to that for sodium ions also in the solution. The technique used in the present experimental work will be useful in understanding the selectivity behav-iour of different ion exchange resins for ions in the solution. Although the ionic selectivity data for the ion exchange resins is readily available in the literature, it is expected that the informa-tion obtained from the actual experimental trials will be more helpful. The technique used in the present experimental work when applied to dif-ferent ion exchange resins will help in there characterization.展开更多
The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 35...The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 358.15 K and atmospheric pressure.The density and viscosity data were fitted by the relevant temperature variation equations,respectively.The variation of density and viscosity with temperature and r was obtained.The solubility of rFeCl_(3)/[A336]Cl to H_2S was measured at temperatures from 318.15 to 348.15 K and pressures from 0 to 150 kPa.The effects of temperature,pressure,and r on the solubility of H_(2)S were discussed.The reaction equilibrium thermodynamic model(RETM)was used to fit the H_(2)S solubility data,and the average relative error was less than 1.3%,indicating that the model can relate the solubility data well.And Henry's constant and chemical reaction equilibrium constant were obtained by the RETM fitting.The relationships of Henry's constant and chemical reaction equilibrium constant with temperature and r were analyzed.展开更多
The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-fl...The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.展开更多
文摘The selectivity behaviour of ion exchange resin Amberlite IR-120 for inorganic cations like sodium and potassium was predicted on the basis of thermodynamic data. The equilibrium constant K values calculated for uni-univalent ion exchange reaction systems were observed to increase with rise in temperature, indicating endothermic ion exchange reactions. From the K values calculated at different temperatures the enthalpy values were calculated. The low enthalpy and higher K values for K+ ion ex-change reaction indicates more affinity of the resin for potassium ions as compared to that for sodium ions also in the solution. The technique used in the present experimental work will be useful in understanding the selectivity behav-iour of different ion exchange resins for ions in the solution. Although the ionic selectivity data for the ion exchange resins is readily available in the literature, it is expected that the informa-tion obtained from the actual experimental trials will be more helpful. The technique used in the present experimental work when applied to dif-ferent ion exchange resins will help in there characterization.
基金Financial support from the National Natural Science Foundation of China(21775081)Shandong Province Natural Science Foundation(ZR2020MB145)。
文摘The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 358.15 K and atmospheric pressure.The density and viscosity data were fitted by the relevant temperature variation equations,respectively.The variation of density and viscosity with temperature and r was obtained.The solubility of rFeCl_(3)/[A336]Cl to H_2S was measured at temperatures from 318.15 to 348.15 K and pressures from 0 to 150 kPa.The effects of temperature,pressure,and r on the solubility of H_(2)S were discussed.The reaction equilibrium thermodynamic model(RETM)was used to fit the H_(2)S solubility data,and the average relative error was less than 1.3%,indicating that the model can relate the solubility data well.And Henry's constant and chemical reaction equilibrium constant were obtained by the RETM fitting.The relationships of Henry's constant and chemical reaction equilibrium constant with temperature and r were analyzed.
文摘The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.