Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has develop...Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.展开更多
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to ...The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.展开更多
文摘Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金the US National Science Foundation (CBET-1603851 and CHE-1710102) for support of this workthe National Science Center of Poland (DEC-2013/09/B/ST4/03711) for support
文摘The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.