We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitrometha...We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition.展开更多
Developing a widely-used reactive force field is meaningful to explore the fundamental reaction mechanism on gas-surface chemical reaction dynamics due to its very high computational efficiency. We here present a stud...Developing a widely-used reactive force field is meaningful to explore the fundamental reaction mechanism on gas-surface chemical reaction dynamics due to its very high computational efficiency. We here present a study of hydrogen and its deuterated molecules dissociation on Pd surfaces based on a full-dimensional potential energy surface (PES) constructed by using a simple second moment approximation reactive force field (SMA RFF). Although the descriptions of the adsorbate-substrate interaction contain only the dissociation reaction of H2/Pd(111) system, a good transferability of SMA potential energy surface (PES) is shown to investigate the hydrogen dissociation on Pd(100). Our simulation results show that, the dissociation probabilities of H2 and its deuterated molecules on Pd(111) and Pd(100) surfaces keep non-monotonous variations with respect to the incident energy Ei, which is in good agreement with the previous ab initio molecular dynamics. Furthermore, for the oriented molecules, the dissociation probabilities of the oriented H2 (D2 and T2) molecule have the same orientation dependence behavior as those oriented HD (HT and DT) molecules.展开更多
The reactive force field was used to study the molecular dynamics of cross-linked EPON 862 (diglycidyl ether of bisphenol-F) and DETDA (diethylene toluene diamine) system in order to predict its thermo-mechanical ...The reactive force field was used to study the molecular dynamics of cross-linked EPON 862 (diglycidyl ether of bisphenol-F) and DETDA (diethylene toluene diamine) system in order to predict its thermo-mechanical behavior under different loading conditions. The approach for building the EPON 862/DETDA structures, cross-linking, and equilibration of the systems, and the evaluation of the models are presented. The mechanical properties such as Young's and shear moduli, Poisson ratio, and yields strength as well as thermal properties such as glass transition temperature and coefficient of thermal expansion are predicted. The results are in close agreement with both experimental data and simulated results in literature.展开更多
Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are couple...Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are coupled and involved from the onset of reaction.In this work,the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics(MD)simulations using a reactive force field(ReaxFF).We show that oxygen transport is the dominant process during the initial oxidation.Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium(0001)surface and further prevented oxidation in the deeper layers.The mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.展开更多
Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material f...Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material for the synthesis of polycarbonate.In this paper,a novel system coupling biomass chemical looping gasification with dimethyl carbonate synthesis with methanol as an intermediate is designed through microscopic mechanism analysis and process optimization.Firstly,reactive force field molecular dynamics simulation is performed to explore the reaction mechanism of biomass chemical looping gasification to determine the optimal gasification temperature range.Secondly,steady-state simulations of the process based on molecular dynamics simulation results are carried out to investigate the effects of temperature,steam to biomass ratio,and oxygen carrier to biomass ratio on the syngas yield and compositions.In addition,the main energy indicators of biomass chemical looping gasification process including lower heating value and cold gas efficiency are analyzed based on the above optimum parameters.Then,two synthesis stages are simulated and optimized with the following results obtained:the optimal temperature and pressure of methanol synthesis stage are 150℃ and 4 MPa;the optimal temperature and pressure of dimethyl carbonate synthesis stage are 140℃ and 0.3 MPa.Finally,the pre-separation-extraction-decantation process separates the mixture of dimethyl carbonate and methanol generated in the synthesis stage with 99.11%purity of dimethyl carbonate.Above results verify the feasibility of producing dimethyl carbonate from the perspective of multi-scale simulation and realize the multi-level utilization of biomass resources.展开更多
The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a sp...The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a special root mean square(RMS)value is constructed by multivariate Weierstrass–Mandelbrot(W–M)function and the rubbing process during that the chemical mechanical polishing(CMP)process of diamond is mimicked utilizing the reactive force field molecular dynamics(ReaxFF MD)simulation.It is found that the contact area A/A0 is positively related with the load,and the friction force F depends on the number of interfacial bridge bonds.Increasing the surface roughness will increase the friction force and friction coefficient.The model with low roughness and high lubrication has less friction force,and the presence of polishing liquid molecules can decrease the friction force and friction coefficient.The RMS value and the degree of damage show a functional relationship with the applied load and lubrication,i.e.,the RMS value decreases more under larger load and higher lubrication,and the diamond substrate occurs severer damage under larger load and lower lubrication.This work will generate fresh insight into the understanding of the microscopic contact of the rough surface at the atomic level.展开更多
Lithium metal batteries(LMBs)represent a promising frontier in energy storage technology,offering high energy density but facing significant challenges.In this work,we address the critical challenge of lithium dendrit...Lithium metal batteries(LMBs)represent a promising frontier in energy storage technology,offering high energy density but facing significant challenges.In this work,we address the critical challenge of lithium dendrite for-mation in LMBs,a key barrier to their efficiency and safety.Focusing on the potential of electrolyte additives,specifically lithium nitrate,to inhibit dendritic growth,we employ advanced multi-scale simulation techniques to explore the formation and properties of the solid electrolyte interphase(SEI)on the anode surface.Our study introduces a novel hybrid simulation methodology,HAIR(Hybrid ab initio and Reactive force field Molecular Dynamics),which combines ab initio molecular dynamics(AIMD)and reactive force field molecular dynamics(RMD).This approach allows for a more precise and reliable examination of the interaction mechanisms of nitrate additives within LMBs.Our findings demonstrate that lithium nitrate contributes to the formation of a stable and fast ionic conductor interface,effectively suppressing dendrite growth.These insights not only advance our un-derstanding of dendrite formation and mitigation strategies in lithium metal batteries,but also highlight the efficacy of HAIR as a pioneering tool for simulating complex chemical interactions in battery materials,offering significant implications for the broader field of energy storage technology.展开更多
Chemically active by-products formed by corona discharge in SF_(6) gas are prone to damaging the exposed epoxy resin,or even leading to an entire insulation failure of the operational GIS/GIL power equipment.In this p...Chemically active by-products formed by corona discharge in SF_(6) gas are prone to damaging the exposed epoxy resin,or even leading to an entire insulation failure of the operational GIS/GIL power equipment.In this proposed research,reactive force field molecular dynamic simulation methodology is applied to investigate the chemical reaction kinetics of epoxy polymer under the impact of highly energetic particles(F,S,SOF,SF,OH and O)so as to explain the degradation mechanism.Among all cases,SF particle-impacted epoxy resin suffers the most serious surface erosion with the lowest remnant mass of 9%and deepest damage penetration of 32.6Å,to which the S particle-caused damage showed similar results.Due to high reactivity of the S atom,it can merge into the epoxy molecules to promote long chain breaking,causing a six-membered ring opening and further dissociation of short carbon chains,which makes the epoxy resin molecules undergo faster spontaneous dissociation with increased temperatures.The changes of small molecular gas products,such as CO_(2),H_(2)O and CH_(2)O,as well as that of the characteristic products,such as HF,CS_(2),SO and H_(2)S,are also evaluated under the impact of different particles.The presented research indicates that enhancing the resistance strength of epoxy polymer against S and SF particles'corrosion is the key approach to improving chemical stability in the SF_(6) environment.Further studies were implemented to optimize the concentration and diameter of nano-Al_(2)O_(3) doped in the composites.According to this paper,aluminum nanoparticle with a diameter of 1nm could significantly reduce the erosion caused by SF and S particles.The micro-scale mechanism lies primarily within two aspects:the nanoparticles improve the surface heat transfer efficiency as to reduce temperature rise,and also provide an effective protection area by balancing distribution and self-exposing,which finally slows down the pyrolysis process of epoxy resin,as well as the reaction intensity with the incident particles.展开更多
To understand the atomistic mechanisms of tension failure of Ni-based superalloy,in this study,the classical molecular dynamics(MD)simulations were used to study the uniaxial tension processes of both the Ni/Ni3 Al in...To understand the atomistic mechanisms of tension failure of Ni-based superalloy,in this study,the classical molecular dynamics(MD)simulations were used to study the uniaxial tension processes of both the Ni/Ni3 Al interface systems and the pure Ni and Ni3 Al systems.To examine the effects of interatomic potentials,we adopted embedded atom method(EAM)and reactive force field(ReaxFF)in the MD simulations.The results of EAM simulations showed that the amorphous structures and voids formed near the interface,facilitating further crack propagation within Ni matrix.The EAM potentials also predicted that dislocations were generated and annihilated alternatively,leading to the oscillation of yielding stress during the tension process.The ReaxFF simulations predicted more amorphous formation and larger tensile strength.The atomistic understanding of the defect initiation and propagation during tension process may help to develop the strengthening strategy for controlling the defect evolution under loading.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11374217)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014BQ008)
文摘We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition.
基金This work was supported by the National Natural Science Foundation of China (No.21506053) and Doctoral Scientific Research Foundation Project (KYY15023).
文摘Developing a widely-used reactive force field is meaningful to explore the fundamental reaction mechanism on gas-surface chemical reaction dynamics due to its very high computational efficiency. We here present a study of hydrogen and its deuterated molecules dissociation on Pd surfaces based on a full-dimensional potential energy surface (PES) constructed by using a simple second moment approximation reactive force field (SMA RFF). Although the descriptions of the adsorbate-substrate interaction contain only the dissociation reaction of H2/Pd(111) system, a good transferability of SMA potential energy surface (PES) is shown to investigate the hydrogen dissociation on Pd(100). Our simulation results show that, the dissociation probabilities of H2 and its deuterated molecules on Pd(111) and Pd(100) surfaces keep non-monotonous variations with respect to the incident energy Ei, which is in good agreement with the previous ab initio molecular dynamics. Furthermore, for the oriented molecules, the dissociation probabilities of the oriented H2 (D2 and T2) molecule have the same orientation dependence behavior as those oriented HD (HT and DT) molecules.
文摘The reactive force field was used to study the molecular dynamics of cross-linked EPON 862 (diglycidyl ether of bisphenol-F) and DETDA (diethylene toluene diamine) system in order to predict its thermo-mechanical behavior under different loading conditions. The approach for building the EPON 862/DETDA structures, cross-linking, and equilibration of the systems, and the evaluation of the models are presented. The mechanical properties such as Young's and shear moduli, Poisson ratio, and yields strength as well as thermal properties such as glass transition temperature and coefficient of thermal expansion are predicted. The results are in close agreement with both experimental data and simulated results in literature.
基金Support of this work from the National Natural Science Foundation of China(Grant No.51361009)Work at Ames Laboratory was supported by the US Department of Energy,Basic Energy Sciences,Division of Materials Science and Engineering under Contract No.DE-AC02-07CH11358,including a grant of computer time at the National Energy Research Scientific Computing Centre(NERSC)in Berkeley,CA.
文摘Understanding of metal oxidation is very critical to corrosion control,catalysis synthesis,and advanced materials engineering.Metal oxidation is a very complex phenomenon,with many different processes which are coupled and involved from the onset of reaction.In this work,the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics(MD)simulations using a reactive force field(ReaxFF).We show that oxygen transport is the dominant process during the initial oxidation.Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium(0001)surface and further prevented oxidation in the deeper layers.The mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.
基金supported by the National Natural Science Foundation of China(22178189)the Natural Science Foundation of Shandong Province(ZR2021MB113)the Postdoctoral Science Foundation of China(2022M711746)。
文摘Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material for the synthesis of polycarbonate.In this paper,a novel system coupling biomass chemical looping gasification with dimethyl carbonate synthesis with methanol as an intermediate is designed through microscopic mechanism analysis and process optimization.Firstly,reactive force field molecular dynamics simulation is performed to explore the reaction mechanism of biomass chemical looping gasification to determine the optimal gasification temperature range.Secondly,steady-state simulations of the process based on molecular dynamics simulation results are carried out to investigate the effects of temperature,steam to biomass ratio,and oxygen carrier to biomass ratio on the syngas yield and compositions.In addition,the main energy indicators of biomass chemical looping gasification process including lower heating value and cold gas efficiency are analyzed based on the above optimum parameters.Then,two synthesis stages are simulated and optimized with the following results obtained:the optimal temperature and pressure of methanol synthesis stage are 150℃ and 4 MPa;the optimal temperature and pressure of dimethyl carbonate synthesis stage are 140℃ and 0.3 MPa.Finally,the pre-separation-extraction-decantation process separates the mixture of dimethyl carbonate and methanol generated in the synthesis stage with 99.11%purity of dimethyl carbonate.Above results verify the feasibility of producing dimethyl carbonate from the perspective of multi-scale simulation and realize the multi-level utilization of biomass resources.
基金the National Key R&D Program of China(2022YFB3404304)the National Natural Science Foundation of China(No.5217052183).
文摘The roughness of the contact surface exerts a vital role in rubbing.It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level.Herein,the rough surface with a special root mean square(RMS)value is constructed by multivariate Weierstrass–Mandelbrot(W–M)function and the rubbing process during that the chemical mechanical polishing(CMP)process of diamond is mimicked utilizing the reactive force field molecular dynamics(ReaxFF MD)simulation.It is found that the contact area A/A0 is positively related with the load,and the friction force F depends on the number of interfacial bridge bonds.Increasing the surface roughness will increase the friction force and friction coefficient.The model with low roughness and high lubrication has less friction force,and the presence of polishing liquid molecules can decrease the friction force and friction coefficient.The RMS value and the degree of damage show a functional relationship with the applied load and lubrication,i.e.,the RMS value decreases more under larger load and higher lubrication,and the diamond substrate occurs severer damage under larger load and lower lubrication.This work will generate fresh insight into the understanding of the microscopic contact of the rough surface at the atomic level.
基金support from National Key Research and Development Program of China(No.2022YFB2502200)National Natural Science Foundation of China(22173066)+5 种基金Natural Science Foundation of Jiangsu Province(BK20230065)Suzhou Key Laboratory of Functional Nano&Soft MaterialsCollaborative Innovation Center of Suzhou Nano Science&TechnologyPriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Lithium metal batteries(LMBs)represent a promising frontier in energy storage technology,offering high energy density but facing significant challenges.In this work,we address the critical challenge of lithium dendrite for-mation in LMBs,a key barrier to their efficiency and safety.Focusing on the potential of electrolyte additives,specifically lithium nitrate,to inhibit dendritic growth,we employ advanced multi-scale simulation techniques to explore the formation and properties of the solid electrolyte interphase(SEI)on the anode surface.Our study introduces a novel hybrid simulation methodology,HAIR(Hybrid ab initio and Reactive force field Molecular Dynamics),which combines ab initio molecular dynamics(AIMD)and reactive force field molecular dynamics(RMD).This approach allows for a more precise and reliable examination of the interaction mechanisms of nitrate additives within LMBs.Our findings demonstrate that lithium nitrate contributes to the formation of a stable and fast ionic conductor interface,effectively suppressing dendrite growth.These insights not only advance our un-derstanding of dendrite formation and mitigation strategies in lithium metal batteries,but also highlight the efficacy of HAIR as a pioneering tool for simulating complex chemical interactions in battery materials,offering significant implications for the broader field of energy storage technology.
基金supported by the National Natural Science Foundation of China(51737005,51929701)the Beijing Natural Science Foundation(3202031).
文摘Chemically active by-products formed by corona discharge in SF_(6) gas are prone to damaging the exposed epoxy resin,or even leading to an entire insulation failure of the operational GIS/GIL power equipment.In this proposed research,reactive force field molecular dynamic simulation methodology is applied to investigate the chemical reaction kinetics of epoxy polymer under the impact of highly energetic particles(F,S,SOF,SF,OH and O)so as to explain the degradation mechanism.Among all cases,SF particle-impacted epoxy resin suffers the most serious surface erosion with the lowest remnant mass of 9%and deepest damage penetration of 32.6Å,to which the S particle-caused damage showed similar results.Due to high reactivity of the S atom,it can merge into the epoxy molecules to promote long chain breaking,causing a six-membered ring opening and further dissociation of short carbon chains,which makes the epoxy resin molecules undergo faster spontaneous dissociation with increased temperatures.The changes of small molecular gas products,such as CO_(2),H_(2)O and CH_(2)O,as well as that of the characteristic products,such as HF,CS_(2),SO and H_(2)S,are also evaluated under the impact of different particles.The presented research indicates that enhancing the resistance strength of epoxy polymer against S and SF particles'corrosion is the key approach to improving chemical stability in the SF_(6) environment.Further studies were implemented to optimize the concentration and diameter of nano-Al_(2)O_(3) doped in the composites.According to this paper,aluminum nanoparticle with a diameter of 1nm could significantly reduce the erosion caused by SF and S particles.The micro-scale mechanism lies primarily within two aspects:the nanoparticles improve the surface heat transfer efficiency as to reduce temperature rise,and also provide an effective protection area by balancing distribution and self-exposing,which finally slows down the pyrolysis process of epoxy resin,as well as the reaction intensity with the incident particles.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0701502 and 2017YFB0702901)the National Nature Science Foundation of China(Grant No.91641128)
文摘To understand the atomistic mechanisms of tension failure of Ni-based superalloy,in this study,the classical molecular dynamics(MD)simulations were used to study the uniaxial tension processes of both the Ni/Ni3 Al interface systems and the pure Ni and Ni3 Al systems.To examine the effects of interatomic potentials,we adopted embedded atom method(EAM)and reactive force field(ReaxFF)in the MD simulations.The results of EAM simulations showed that the amorphous structures and voids formed near the interface,facilitating further crack propagation within Ni matrix.The EAM potentials also predicted that dislocations were generated and annihilated alternatively,leading to the oscillation of yielding stress during the tension process.The ReaxFF simulations predicted more amorphous formation and larger tensile strength.The atomistic understanding of the defect initiation and propagation during tension process may help to develop the strengthening strategy for controlling the defect evolution under loading.