Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that t...Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that the films were composed of Cu3N crystallites and exhibited a preferential orientation of the [111] direction at a low nitrogen gas (N2) partial pressure. The film growth preferred the [111] and the [100] direction at a high N2 partial pressure. Such preferential film growth is interpreted as being due to the variation in the Copper (Cu) nitrification rate with the N2 pressure. The N2 partial pressure affects not only the crystal structure of the film but also the deposition rate and the resistivity of the Cu3N film. In our experiment, the deposition rate of Cu3N films was 18 nm/min to 30 nm/min and increased with the N2 partial pressure. The resistivity of the Cu3N films increased sharply with the increasing N2 partial pressure. At a low N2 partial pressure, the Cu3N films showed a metallic conduction mechanism through the Cu path, and at a high N2 partial pressure, the conductivity of the Cu3N films showed a semiconductor conduction mechanism.展开更多
基金the Key Programme of the Education Department of Hubei Province,China(2003A001,D200529002)
文摘Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that the films were composed of Cu3N crystallites and exhibited a preferential orientation of the [111] direction at a low nitrogen gas (N2) partial pressure. The film growth preferred the [111] and the [100] direction at a high N2 partial pressure. Such preferential film growth is interpreted as being due to the variation in the Copper (Cu) nitrification rate with the N2 pressure. The N2 partial pressure affects not only the crystal structure of the film but also the deposition rate and the resistivity of the Cu3N film. In our experiment, the deposition rate of Cu3N films was 18 nm/min to 30 nm/min and increased with the N2 partial pressure. The resistivity of the Cu3N films increased sharply with the increasing N2 partial pressure. At a low N2 partial pressure, the Cu3N films showed a metallic conduction mechanism through the Cu path, and at a high N2 partial pressure, the conductivity of the Cu3N films showed a semiconductor conduction mechanism.