To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coef...To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite moderator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended.展开更多
In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched ...In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched uranium or plutonium as the starting fuel.By exploiting plutonium as the starting fuel and thorium as the fertile fuel,the high-purity^(233)U produced can be separated from the spent fuel by fluorination volatilization.Therefore,the molten salt reactor started with plutonium can be designed as a^(233)U breeder with the burning plutonium extracted from a pressurized water reactor(PWR).Combining these advantages,the study of the physical properties of plutonium-activated salt reactors is attractive.This study mainly focused on the burnup performance and temperature reactivity coefficient of a small modular molten-salt reactor started with plutonium(SM-MSR-Pu).The neutron spectra,^(233)U production,plutonium incineration,minor actinide(MA)residues,and temperature reactivity coefficients for different fuel salt volume fractions(VF)and hexagon pitch(P)sizes were calculated to analyze the burnup behavior in the SM-SMR-Pu.Based on the comparative analysis results of the burn-up calculation,a lower VF and larger P size are more beneficial for improving the burnup performance.However,from a passive safety perspective,a higher fuel volume fraction and smaller hexagon pitch size are necessary to achieve a deep negative feedback coefficient.Therefore,an excellent burnup performance and a deep negative temperature feedback coefficient are incompatible,and the optimal design range is relatively narrow in the optimized design of an SM-MSR-Pu.In a comprehensive consideration,P=20 cm and VF=20%are considered to be relatively balanced design parameters.Based on the fuel off-line batching scheme,a 250 MWth SM-MSR-Pu can produce approximately 29.83 kg of ^(233)U,incinerate 98.29 kg of plutonium,and accumulate 14.70 kg of MAs per year,and the temperature reactivity coefficient can always be lower than−4.0pcm/K.展开更多
基金supported by the Youth Innovation Promotion Association CAS (No.2022258)the National Natural Science Foundation of China (No.12175300)+1 种基金the Chinese TMSR Strategic Pioneer Science and Technology Project (No.XDA02010000)the Young Potential Program of Shanghai Institute of Applied Physics,Chinese Academy of Sciences (No.E1550510)。
文摘To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite moderator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-003)the Chinese Academy of Sciences Special Research Assistant Funding Project.
文摘In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched uranium or plutonium as the starting fuel.By exploiting plutonium as the starting fuel and thorium as the fertile fuel,the high-purity^(233)U produced can be separated from the spent fuel by fluorination volatilization.Therefore,the molten salt reactor started with plutonium can be designed as a^(233)U breeder with the burning plutonium extracted from a pressurized water reactor(PWR).Combining these advantages,the study of the physical properties of plutonium-activated salt reactors is attractive.This study mainly focused on the burnup performance and temperature reactivity coefficient of a small modular molten-salt reactor started with plutonium(SM-MSR-Pu).The neutron spectra,^(233)U production,plutonium incineration,minor actinide(MA)residues,and temperature reactivity coefficients for different fuel salt volume fractions(VF)and hexagon pitch(P)sizes were calculated to analyze the burnup behavior in the SM-SMR-Pu.Based on the comparative analysis results of the burn-up calculation,a lower VF and larger P size are more beneficial for improving the burnup performance.However,from a passive safety perspective,a higher fuel volume fraction and smaller hexagon pitch size are necessary to achieve a deep negative feedback coefficient.Therefore,an excellent burnup performance and a deep negative temperature feedback coefficient are incompatible,and the optimal design range is relatively narrow in the optimized design of an SM-MSR-Pu.In a comprehensive consideration,P=20 cm and VF=20%are considered to be relatively balanced design parameters.Based on the fuel off-line batching scheme,a 250 MWth SM-MSR-Pu can produce approximately 29.83 kg of ^(233)U,incinerate 98.29 kg of plutonium,and accumulate 14.70 kg of MAs per year,and the temperature reactivity coefficient can always be lower than−4.0pcm/K.