Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-proce...Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-procedural ultrasound scan of the lumbar spine has been shown to be of benefit in guiding lumbar epidural insertion in obstetric patients. Information on the use of real-time ultrasound (RUS) guided SAB, to date, been limited. This study compared RUS guided SAB to traditional landmark guided technique in patients undergoing spinal anesthesia for different surgical procedures. Methods: This was a prospective, single center, comparative observational study conducted in the department of anesthesiology at our center. 560 patients who underwent spinal anesthesia either by landmark based technique or real-time ultrasound-guided methods. The primary outcome was the first attempt success rate of dural puncture when employing the two methods. Results: Baseline characteristics were similar in the two study groups. The first attempt success rate of dural puncture in landmark guided group was 64.3% compared to 72.6% in the ultrasound guided group. This difference was not statistically significant. The procedure performance time was significantly shorter with landmark palpation compared to use of real-time ultrasound guided method. Conclusion: Use of RUS-guided technique does not significantly improve the first attempt success rate of SAB dural puncture during spinal anesthesia compared to the traditional landmark-guided technique.展开更多
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
Considering the impact of time delay in the lateral stiffness of the primary suspension and stochastic disturbances of equivalent conicity on the wheelset system, a stochastic time-delayed wheelset system is establish...Considering the impact of time delay in the lateral stiffness of the primary suspension and stochastic disturbances of equivalent conicity on the wheelset system, a stochastic time-delayed wheelset system is established. The wheelset system is transformed into a onedimensional Ito stochastic differential equation using central manifold and stochastic averaging methods. The analysis of the system's stochastic stability is conducted through the maximum Lyapunov exponent and singular boundary theory. The combination of the stationary probability density method and numerical simulation is employed to discuss the types and conditions of stochastic P-bifurcation in the wheelset system. The results indicate that changes in speed and time delay induce stochastic P-bifurcations in the wheelset system, while changes in noise intensity do not lead to stochastic P-bifurcations. Both time delay and equivalent conicity affect the critical speed of the wheelset system, and the critical speed gradually increases with the decrease of time delay and equivalent conicity.展开更多
The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is ac...The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is accompanied by a local master clock. This largely restricts the stability and reliability of the CTS. We simulate the restriction and analyze the influence of the master clock on the CTS. It proves that the CTS's long-term stability is also positively related to that of the master clock, until the region dominated by the frequency drift of the H-maser(averaging time longer than ~10~5s).Aiming at this restriction, a real-time clock network is utilized. Based on the network, a real-time CTS referenced by a stable remote master clock is achieved. The experiment comparing two real-time CTSs referenced by a local and a remote master clock respectively reveals that under open-loop steering, the stability of the CTS is improved by referencing to a remote and more stable master clock instead of a local and less stable master clock. In this way, with the help of the proposed scheme, the CTS can be referenced to the most stable master clock within the network in real time, no matter whether it is local or remote, making democratic polycentric timekeeping possible.展开更多
A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio tele...A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a...This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.展开更多
A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dyn...A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dynamic absorbers with different structural and control parameters as examples, the effects of third-order nonlinear coefficients, time-delay control parameters, and negative stiffness coefficients on reducing the replication of the main system were discussed. The nonlinear dynamic absorber has a very good vibration reduction effect at the resonance point of the main system and a nearby area, and when 1 increases to a certain level, the stable region of the system continues to increase. The amplitude curve of the main system of a nonlinear dynamic absorber will generate Hop bifurcation and saddle node bifurcation in the region far from the resonance point, resulting in almost periodic motion and jumping phenomena in the system. For nonlinear dynamic absorbers with determined structural parameters, time-delay feedback control can be adopted to control the amplitude of the main system. For different negative stiffness coefficients, there exists a minimum damping point for the amplitude of the main system under the determined system structural parameters and time-delay feedback control parameters.展开更多
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
This study evaluated the impact of Ghana’s Integrated Customs Management System (ICUMS), implemented within the National Single Window initiative, on the efficiency of issuing Delivery Orders (DO) at Tema Port. Filli...This study evaluated the impact of Ghana’s Integrated Customs Management System (ICUMS), implemented within the National Single Window initiative, on the efficiency of issuing Delivery Orders (DO) at Tema Port. Filling a gap in the existing literature, the research employed a quantitative approach to assess a specific time-related aspect of the cargo clearance process. Employing an Independent t-test on a dataset spanning 2026 Delivery Orders (924 pre-ICUMS and 1102 post-ICUMS) from July 2020 to July 2023, the study investigated ICUMS’s effectiveness in reducing DO issuance time. Results indicate a noteworthy decrease in average DO issuance time, from 11 days pre-implementation to approximately 9 days post-implementation, a reduction validated by statistical analysis through the independent t-test. In light of these findings, the study recommends ongoing refinement of the implementation, reinforcement of trade facilitation measures, and the adoption of best practices from successful global ports. Continuous stakeholder training and regular assessments of ICUMS performance are also endorsed. The study’s implications support the theoretical framework for Single Window systems and carry significant policy implications, emphasizing the need for collaborative efforts to streamline trade facilitation processes driven by Information Technology. Practically, the results serve as a management tool for stakeholders, highlighting areas for targeted interventions to reduce DO issuance times. Methodologically, this research contributes by applying robust statistical analysis to a specific component within the Time Release Study framework, offering a nuanced understanding of trade facilitation systems’ effectiveness in improving cargo clearance processes.展开更多
In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternativ...In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves, as long as the shifting speed falls in a finite interval where the endpoints are obtained from KPP-Fisher speeds. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.展开更多
Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
文摘Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-procedural ultrasound scan of the lumbar spine has been shown to be of benefit in guiding lumbar epidural insertion in obstetric patients. Information on the use of real-time ultrasound (RUS) guided SAB, to date, been limited. This study compared RUS guided SAB to traditional landmark guided technique in patients undergoing spinal anesthesia for different surgical procedures. Methods: This was a prospective, single center, comparative observational study conducted in the department of anesthesiology at our center. 560 patients who underwent spinal anesthesia either by landmark based technique or real-time ultrasound-guided methods. The primary outcome was the first attempt success rate of dural puncture when employing the two methods. Results: Baseline characteristics were similar in the two study groups. The first attempt success rate of dural puncture in landmark guided group was 64.3% compared to 72.6% in the ultrasound guided group. This difference was not statistically significant. The procedure performance time was significantly shorter with landmark palpation compared to use of real-time ultrasound guided method. Conclusion: Use of RUS-guided technique does not significantly improve the first attempt success rate of SAB dural puncture during spinal anesthesia compared to the traditional landmark-guided technique.
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
基金Supported by the National Natural Science Foundation of China (61863022)the Key Project of Gansu Province Natural Science Foundation(23JRRA882)。
文摘Considering the impact of time delay in the lateral stiffness of the primary suspension and stochastic disturbances of equivalent conicity on the wheelset system, a stochastic time-delayed wheelset system is established. The wheelset system is transformed into a onedimensional Ito stochastic differential equation using central manifold and stochastic averaging methods. The analysis of the system's stochastic stability is conducted through the maximum Lyapunov exponent and singular boundary theory. The combination of the stationary probability density method and numerical simulation is employed to discuss the types and conditions of stochastic P-bifurcation in the wheelset system. The results indicate that changes in speed and time delay induce stochastic P-bifurcations in the wheelset system, while changes in noise intensity do not lead to stochastic P-bifurcations. Both time delay and equivalent conicity affect the critical speed of the wheelset system, and the critical speed gradually increases with the decrease of time delay and equivalent conicity.
基金supported in part by the National Natural Science Foundation of China (Grant No.61971259)the National Key R&D Program of China (Grant No.2021YFA1402102)Tsinghua University Initiative Scientific Research Program。
文摘The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is accompanied by a local master clock. This largely restricts the stability and reliability of the CTS. We simulate the restriction and analyze the influence of the master clock on the CTS. It proves that the CTS's long-term stability is also positively related to that of the master clock, until the region dominated by the frequency drift of the H-maser(averaging time longer than ~10~5s).Aiming at this restriction, a real-time clock network is utilized. Based on the network, a real-time CTS referenced by a stable remote master clock is achieved. The experiment comparing two real-time CTSs referenced by a local and a remote master clock respectively reveals that under open-loop steering, the stability of the CTS is improved by referencing to a remote and more stable master clock instead of a local and less stable master clock. In this way, with the help of the proposed scheme, the CTS can be referenced to the most stable master clock within the network in real time, no matter whether it is local or remote, making democratic polycentric timekeeping possible.
基金supported by the National Natural Sci-ence Foundation of China(12273098).
文摘A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
基金funded by the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.
文摘A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dynamic absorbers with different structural and control parameters as examples, the effects of third-order nonlinear coefficients, time-delay control parameters, and negative stiffness coefficients on reducing the replication of the main system were discussed. The nonlinear dynamic absorber has a very good vibration reduction effect at the resonance point of the main system and a nearby area, and when 1 increases to a certain level, the stable region of the system continues to increase. The amplitude curve of the main system of a nonlinear dynamic absorber will generate Hop bifurcation and saddle node bifurcation in the region far from the resonance point, resulting in almost periodic motion and jumping phenomena in the system. For nonlinear dynamic absorbers with determined structural parameters, time-delay feedback control can be adopted to control the amplitude of the main system. For different negative stiffness coefficients, there exists a minimum damping point for the amplitude of the main system under the determined system structural parameters and time-delay feedback control parameters.
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
文摘This study evaluated the impact of Ghana’s Integrated Customs Management System (ICUMS), implemented within the National Single Window initiative, on the efficiency of issuing Delivery Orders (DO) at Tema Port. Filling a gap in the existing literature, the research employed a quantitative approach to assess a specific time-related aspect of the cargo clearance process. Employing an Independent t-test on a dataset spanning 2026 Delivery Orders (924 pre-ICUMS and 1102 post-ICUMS) from July 2020 to July 2023, the study investigated ICUMS’s effectiveness in reducing DO issuance time. Results indicate a noteworthy decrease in average DO issuance time, from 11 days pre-implementation to approximately 9 days post-implementation, a reduction validated by statistical analysis through the independent t-test. In light of these findings, the study recommends ongoing refinement of the implementation, reinforcement of trade facilitation measures, and the adoption of best practices from successful global ports. Continuous stakeholder training and regular assessments of ICUMS performance are also endorsed. The study’s implications support the theoretical framework for Single Window systems and carry significant policy implications, emphasizing the need for collaborative efforts to streamline trade facilitation processes driven by Information Technology. Practically, the results serve as a management tool for stakeholders, highlighting areas for targeted interventions to reduce DO issuance times. Methodologically, this research contributes by applying robust statistical analysis to a specific component within the Time Release Study framework, offering a nuanced understanding of trade facilitation systems’ effectiveness in improving cargo clearance processes.
文摘In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves, as long as the shifting speed falls in a finite interval where the endpoints are obtained from KPP-Fisher speeds. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle.
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.