System optimization plays a crucial role in developing VR system after 3D modeling, affecting the system's Immersion and Interaction performance enormously. In this article, several key techniques of optimizing a ...System optimization plays a crucial role in developing VR system after 3D modeling, affecting the system's Immersion and Interaction performance enormously. In this article, several key techniques of optimizing a virtual mining system were discussed: optimizing 3D models to keep the polygon number in VR system within target hardware's processing ability; optimizing texture database to save texture memory with perfect visual effect; optimizing database hierarchy structure to accelerate model retrieval; and optimizing LOD hierarchy structure to speed up rendering.展开更多
To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By...To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By analyzing information transmission regularity and EPA deterministic scheduling mechanism,periodic messages were categorized as different modes according to their entering-queue time.The scheduling characteristics and delivery time of each mode and their interacting relations were studied,during which the models of real-time performance of periodic information transmission in EPA system were established.On this basis,an experimental platform is developed to test the delivery time of periodic messages transmission in EPA system.According to the analysis and the experiment,the main factors that limit the real-time performance of EPA periodic data transmission and the improvement methods were proposed.展开更多
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with...Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.展开更多
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper intr...The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper introduces a real-time software sys-tem which has been used in a power station for monitoring a large capacity thermal gener-ating unit.The subsystems,environment,performance and development of the system areexplained,and the common problems about real-time software system are described.展开更多
We consider a multi server and multichannel real-time system with identical servers (e.g. unmanned aerial vehicles, machine controllers, etc.) that provide services for requests of real-time jobs arriving via several ...We consider a multi server and multichannel real-time system with identical servers (e.g. unmanned aerial vehicles, machine controllers, etc.) that provide services for requests of real-time jobs arriving via several different channels (e.g. surveillance regions, assembly lines, etc.) working under maximum load regime. Each channel has its own constant numbers of jobs inside at any instant. Each channel has its own specifications, and therefore different kinds of equipment and inventory are needed to serve different channels. There is a limited number of identical maintenance teams (less than the total number of servers in the system). We compute analytically steady- state probabilities of this system, its availability, loss penalty function and other performance characteristics, when both service and maintenance times are exponentially distributed.展开更多
We consider a real time data acquisition and processing multiserver system with identical servers (such as unmanned aerial vehicles, machine controllers, overhearing devices, medical monitoring devices, etc.) which ca...We consider a real time data acquisition and processing multiserver system with identical servers (such as unmanned aerial vehicles, machine controllers, overhearing devices, medical monitoring devices, etc.) which can be maintained/programmed for different kinds of activities (e.g. passive or active). This system provides a service for real time tasks arriving via several channels (such as surveillance regions, assembly lines, communication channels, etc.) and involves maintenance. We focus on the worst case analysis of the system with ample maintenance facilities exponentially distributed time to failure and maintenance times. We consider two kinds of models (with and without nonpreemptive priorities) and provide balance equations for steady state probabilities and various performance measures, when both operation and maintenance times are exponentially distributed.展开更多
A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis...A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis will perform analysis of specific network node performance, correlation analysis of relative network nodes performance and evolutionary mathematical modeling of long-term network performance measurements. The online real-time network performance forecast will be based on one so-called hybrid prediction modeling approach for short-term network, performance prediction and trend analysis. Based on the module design, the system proposed has good intelligence, scalability and self-adaptability, which will offer highly effective network performance analysis and forecast tools for network managers, and is one ideal support platform for network performance analysis and forecast effort.展开更多
We consider a real-world problem of military intelligence unit equipped with multiple identical unmanned aerial vehicles (UAV) responsible for several regions (with requests of real-time jobs arriving from independent...We consider a real-world problem of military intelligence unit equipped with multiple identical unmanned aerial vehicles (UAV) responsible for several regions (with requests of real-time jobs arriving from independent sources). We suppose that there are no ample maintenance facilities, allowing simultaneous treatment of all vehicles if necessary. Under certain assumptions, these real-time systems can be treated using a queueing theory methodology and/or as Markov chains. We show how to compute steady-state probabilities of these systems, their performance effectiveness, and various performance parameters (for exponentially distributed service and maintenance times of UAVs, as well as tasks duration and their arrival pattern).展开更多
文摘System optimization plays a crucial role in developing VR system after 3D modeling, affecting the system's Immersion and Interaction performance enormously. In this article, several key techniques of optimizing a virtual mining system were discussed: optimizing 3D models to keep the polygon number in VR system within target hardware's processing ability; optimizing texture database to save texture memory with perfect visual effect; optimizing database hierarchy structure to accelerate model retrieval; and optimizing LOD hierarchy structure to speed up rendering.
基金Supported by the National High Technology Research and Development Program of China (2006AA040301-4,2007AA041301-6)
文摘To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By analyzing information transmission regularity and EPA deterministic scheduling mechanism,periodic messages were categorized as different modes according to their entering-queue time.The scheduling characteristics and delivery time of each mode and their interacting relations were studied,during which the models of real-time performance of periodic information transmission in EPA system were established.On this basis,an experimental platform is developed to test the delivery time of periodic messages transmission in EPA system.According to the analysis and the experiment,the main factors that limit the real-time performance of EPA periodic data transmission and the improvement methods were proposed.
基金supported by the National Natural Science Foundation (71301119)the Shanghai Natural Science Foundation (12ZR1434100)
文摘Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
文摘The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper introduces a real-time software sys-tem which has been used in a power station for monitoring a large capacity thermal gener-ating unit.The subsystems,environment,performance and development of the system areexplained,and the common problems about real-time software system are described.
文摘We consider a multi server and multichannel real-time system with identical servers (e.g. unmanned aerial vehicles, machine controllers, etc.) that provide services for requests of real-time jobs arriving via several different channels (e.g. surveillance regions, assembly lines, etc.) working under maximum load regime. Each channel has its own constant numbers of jobs inside at any instant. Each channel has its own specifications, and therefore different kinds of equipment and inventory are needed to serve different channels. There is a limited number of identical maintenance teams (less than the total number of servers in the system). We compute analytically steady- state probabilities of this system, its availability, loss penalty function and other performance characteristics, when both service and maintenance times are exponentially distributed.
文摘We consider a real time data acquisition and processing multiserver system with identical servers (such as unmanned aerial vehicles, machine controllers, overhearing devices, medical monitoring devices, etc.) which can be maintained/programmed for different kinds of activities (e.g. passive or active). This system provides a service for real time tasks arriving via several channels (such as surveillance regions, assembly lines, communication channels, etc.) and involves maintenance. We focus on the worst case analysis of the system with ample maintenance facilities exponentially distributed time to failure and maintenance times. We consider two kinds of models (with and without nonpreemptive priorities) and provide balance equations for steady state probabilities and various performance measures, when both operation and maintenance times are exponentially distributed.
基金the National 863 High-Tech Project (863 -3 0 0 -0 2 -0 9-99) and Key Research Project of Hubei Province(991P110 )
文摘A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis will perform analysis of specific network node performance, correlation analysis of relative network nodes performance and evolutionary mathematical modeling of long-term network performance measurements. The online real-time network performance forecast will be based on one so-called hybrid prediction modeling approach for short-term network, performance prediction and trend analysis. Based on the module design, the system proposed has good intelligence, scalability and self-adaptability, which will offer highly effective network performance analysis and forecast tools for network managers, and is one ideal support platform for network performance analysis and forecast effort.
文摘We consider a real-world problem of military intelligence unit equipped with multiple identical unmanned aerial vehicles (UAV) responsible for several regions (with requests of real-time jobs arriving from independent sources). We suppose that there are no ample maintenance facilities, allowing simultaneous treatment of all vehicles if necessary. Under certain assumptions, these real-time systems can be treated using a queueing theory methodology and/or as Markov chains. We show how to compute steady-state probabilities of these systems, their performance effectiveness, and various performance parameters (for exponentially distributed service and maintenance times of UAVs, as well as tasks duration and their arrival pattern).