Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the syste...Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.展开更多
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi...A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.展开更多
Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-proce...Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-procedural ultrasound scan of the lumbar spine has been shown to be of benefit in guiding lumbar epidural insertion in obstetric patients. Information on the use of real-time ultrasound (RUS) guided SAB, to date, been limited. This study compared RUS guided SAB to traditional landmark guided technique in patients undergoing spinal anesthesia for different surgical procedures. Methods: This was a prospective, single center, comparative observational study conducted in the department of anesthesiology at our center. 560 patients who underwent spinal anesthesia either by landmark based technique or real-time ultrasound-guided methods. The primary outcome was the first attempt success rate of dural puncture when employing the two methods. Results: Baseline characteristics were similar in the two study groups. The first attempt success rate of dural puncture in landmark guided group was 64.3% compared to 72.6% in the ultrasound guided group. This difference was not statistically significant. The procedure performance time was significantly shorter with landmark palpation compared to use of real-time ultrasound guided method. Conclusion: Use of RUS-guided technique does not significantly improve the first attempt success rate of SAB dural puncture during spinal anesthesia compared to the traditional landmark-guided technique.展开更多
The digital economy has infused vitality into the transformation and development of the real economy,urging enterprises to break through core technological barriers,address bottleneck issues,and improve their core com...The digital economy has infused vitality into the transformation and development of the real economy,urging enterprises to break through core technological barriers,address bottleneck issues,and improve their core competitiveness.It fosters the comprehensive digital transformation of agriculture,manufacturing,and service sectors,improving the dynamism of the real economy and fostering more consumption hotspots.Efforts are underway to enhance industrial supply chains and innovation chains,optimize regional resource allocation,and promote a virtuous cycle within the real economy.Initiatives are being undertaken to standardize the development of digital economic platforms,promote the high-quality development of regional economies,and leverage the advantages of the socialist market economy with Chinese characteristics.展开更多
Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on m...Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.展开更多
Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation ...Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.展开更多
objective:Two cycles of induction chemotherapy(IC)followed by 2 cycles of platinum-based concurrent chemoradiotherapy(CCRT)(2IC+2CCRT)for locoregionally advanced nasopharyngeal carcinoma(LA-NPC)is widely adopted but n...objective:Two cycles of induction chemotherapy(IC)followed by 2 cycles of platinum-based concurrent chemoradiotherapy(CCRT)(2IC+2CCRT)for locoregionally advanced nasopharyngeal carcinoma(LA-NPC)is widely adopted but not evidence-confirmed.This study aimed to determine the clinical value of 2IC+2CCRT regarding efficacy,toxicity and cost-effectiveness.Methods:This real-world study from two epidemic centers used propensity score matching(PSM)and inverse probability of treatment weighting(IPTW)analyses.The enrolled patients were divided into three groups based on treatment modality:Group A(2IC+2CCRT),Group B(3IC+2CCRT or 2IC+3CCRT)and Group C(3IC+3CCRT).Long-term survival,acute toxicities and cost-effectiveness were compared among the groups.We developed a prognostic model dividing the population into high-and low-risk cohorts,and survivals including overall survival(OS),progression-free survival(PFS),distant metastasis-free survival(DMFS)and locoregional relapse-free survival(LRRFS)were compared among the three groups according to certain risk stratifications.Results:Of 4,042 patients,1,175 were enrolled,with 660,419,and 96 included in Groups A,B and C,respectively.Five-year survivals were similar among the three groups after PSM and confirmed by IPTW.Grade 3-4 neutropenia and leukocytopenia were significantly higher in Groups C and B than in Group A(52.1%vs.41.5%vs.25.2%;41.7%vs.32.7%vs.25.0%)as were grade 3-4 nausea/vomiting and oral mucositis(29.2%vs.15.0%vs.6.1%;32.3%vs.25.3%vs.18.0%).Cost-effective analysis suggested that 2IC+2CCRT was the least expensive,while the health benefits were similar to those of the other groups.Further exploration showed that 2IC+2CCRT tended to be associated with a shorter PFS in high-risk patients,while 3IC+3CCRT potentially contributed to poor PFS in low-risk individuals,mainly reflected by LRRFS.Conclusions:In LA-NPC patients,2IC+2CCRT was the optimal choice regarding efficacy,toxicity and costeffectiveness;however,2IC+2CCRT and 3IC+3CCRT probably shortened LRRFS in high-and low-risk populations,respectively.展开更多
To better understand the potential and limitations of the tokenization of real asset mar-kets,empirical studies need to examine this radically new organization of financial mar-kets.In our study,we examine the financi...To better understand the potential and limitations of the tokenization of real asset mar-kets,empirical studies need to examine this radically new organization of financial mar-kets.In our study,we examine the financial and economic consequences of tokenizing 58 residential rental properties in the US,particularly those in Detroit.Tokenization aims at fragmented ownership.We found that the residential properties examined have 254 owners on average.Investors with a greater than USD 5,000 investment in real estate tokens,diversify their real estate ownership across properties within and across the cities.Property ownership changes about once yearly,with more changes for proper-ties on decentralized exchanges.We report that real estate token prices move accord-ing to the house price index;hence,investing in real estate tokens provides economic exposure to residential house prices.展开更多
Nuclear security usually requires the simultaneous detection of neutrons and gamma rays.With the development of crystalline materials in recent years,Cs2LiLaBr6(CLLB)dual-readout detectors have attracted extensive att...Nuclear security usually requires the simultaneous detection of neutrons and gamma rays.With the development of crystalline materials in recent years,Cs2LiLaBr6(CLLB)dual-readout detectors have attracted extensive attention from researchers,where real-time neutron/gamma pulse discrimination is the critical factor among detector performance parameters.This study investigated the discrimination performance of the charge comparison,amplitude comparison,time comparison,and pulse gradient_(m)ethods and the effects of a Sallen–Key filter on their performance.Experimental results show that the figure of merit(FOM)of all four methods is improved by proper filtering.Among them,the charge comparison method exhibits excellent noise resistance;moreover,it is the most_(s)uitable method of real-time discrimination for CLLB detectors.However,its discrimination performance depends on the parameters t_(s),t_(m),and t_(e).When t_(s)corresponds to the moment at which the pulse is at 10%of its peak value,t_(e)requires a delay of only 640–740 ns compared to t_(s),at which time the potentially optimal FOM of the charge comparison method at 3.1–3.3 MeV is greater than 1.46.The FOM obtained using the t_(m)value calculated by a proposed maximized discrimination difference model(MDDM)and the potentially optimal FOM differ by less than 3.9%,indicating that the model can provide good guidance for parameter selection in the charge comparison method.展开更多
Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on ...Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on the investigation of the requirements of railway real estate management and operation,combined with Beidou positioning,GIS(Geographic Information System),multi-source data fusion and other cutting-edge technologies,this paper puts forward the multi-dimensional dynamic statistical method of real estate information,the identification method of railway land occupation and the comprehensive evaluation method of real estate development and utilization potential,and build the railway real estate supervision and operation platform,design the function of the platform,so as to provide intelligent solutions for the railway real estate operation.展开更多
Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for ban...Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for banks and other financial institutions to choose suitable investment objects.Additionally,it encourages real estate enterprises to abide by market norms and provide reliable information for the standardized management of the real estate industry.However,Chinese real estate companies are hesitant to disclose their actual operating data due to privacy concerns,making subjective evalu-ation approaches inevitable,occupying important roles in accomplishing Chinese real estate enterprise credit risk assessment tasks.To improve the normative and reliability of credit risk assessment for Chinese real estate enterprises,this study proposes an integrated multi-criteria group decision-making approach.First,a credit risk assessment index for Chinese real estate enterprises is established.Then,the proposed framework combines proportional hesitant fuzzy linguistic term sets and preference ranking organization method for enrichment evaluation II methods.This approach is suitable for processing large amounts of data with high uncertainty,which is often the case in credit risk assessment tasks of Chinese real estate enterprises involving massive subjec-tive evaluation information.Finally,the proposed model is validated through a case study accompanied by sensitivity and comparative analyses to verify its rationality and feasibility.This study contributes to the research on credit assessment for Chinese real estate enterprises and provides a revised paradigm for real estate enterprise credit risk assessment.展开更多
There has been disagreement over the value of purchasing space in the metaverse, but many businesses including Nike, The Wendy’s Company, and McDonald’s have jumped in headfirst. While the metaverse land rush has be...There has been disagreement over the value of purchasing space in the metaverse, but many businesses including Nike, The Wendy’s Company, and McDonald’s have jumped in headfirst. While the metaverse land rush has been called an “illusion” given underdeveloped infrastructure, including inadequate software and servers, and the potential opportunities for economic and legal abuse, the “real estate of the future” shows no signs of slowing. While the current virtual space of the metaverse is worth $6.30 billion, that is expected to grow to $84.09 billion by the end of 2028. But the long-term legal and regulatory considerations of capitalizing on the investment, as well as the manner in which blockchain technology can secure users’ data and digital assets, has yet to be properly investigated. With the metaverse still in a conceptual phase, building a new 3D social environment capable of digital transactions will represent most of the initial investment in time in human capital. Digital twin technologies, already well-established in industry, will be ported to support the need to architect and furnish the new digital world. The return on and viability of investing in the “real estate of the future” raises questions fundamental to the success or failure of the enterprise. As such this paper proposes a novel framing of the issue and looks at the intersection where finance, technology, and law are converging to prevent another Dot-com bubble of the late 1990s in metaverse-based virtual real estate transactions. Furthermore, the paper will argue that these domains are technologically feasible, but the main challenges for commercial users remain in the legal and regulatory arenas. As has been the case with the emergence of online commerce, a legal assessment of the metaverse indicates that courts will look to traditional and established legal principles when addressing issues until the enactment of federal and/or state statutes and accompanying regulations. Lastly, whereas traditional regulation of real estate would involve property law, the current legal framing of ownership of metaverse assets is governed by contract law.展开更多
The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on t...The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.展开更多
In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization...In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization of nodes in real time wireless networks helps to improve the overall functioning of networks.This study presents an Improved Metaheuristics based Energy Efficient Clustering with Node Localization(IM-EECNL)approach for real-time wireless networks.The proposed IM-EECNL technique involves two major processes namely node localization and clustering.Firstly,Chaotic Water Strider Algorithm based Node Localization(CWSANL)technique to determine the unknown position of the nodes.Secondly,an Oppositional Archimedes Optimization Algorithm based Clustering(OAOAC)technique is applied to accomplish energy efficiency in the network.Besides,the OAOAC technique derives afitness function comprising residual energy,distance to cluster heads(CHs),distance to base station(BS),and load.The performance validation of the IM-EECNL technique is carried out under several aspects such as localization and energy efficiency.A wide ranging comparative outcomes analysis highlighted the improved performance of the IM-EECNL approach on the recent approaches with the maximum packet delivery ratio(PDR)of 0.985.展开更多
Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time....Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time.This work proposes an adap-tive learning algorithm-based framework,Twitter Sentiment Drift Analysis-Bidir-ectional Encoder Representations from Transformers(TSDA-BERT),which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant data in real time.The framework also works on static data by converting them to data streams using the Kafka tool.The experiments conducted on real time and simulated tweets of sports,health care andfinancial topics show that the proposed system is able to detect sentiment drifts and maintain the performance of the classification model,with accuracies of 91%,87%and 90%,respectively.Though the results have been provided only for a few topics,as a proof of concept,this framework can be applied to detect sentiment drifts and perform sentiment classification on real time data streams of any topic.展开更多
Wireless Sensor Networks(WSNs)are a major element of Internet of Things(IoT)networks which offer seamless sensing and wireless connectivity.Disaster management in smart cities can be considered as a safety critical ap...Wireless Sensor Networks(WSNs)are a major element of Internet of Things(IoT)networks which offer seamless sensing and wireless connectivity.Disaster management in smart cities can be considered as a safety critical application.Therefore,it becomes essential in ensuring network accessibility by improving the lifetime of IoT assisted WSN.Clustering and multihop routing are considered beneficial solutions to accomplish energy efficiency in IoT networks.This article designs an IoT enabled energy aware metaheuristic clustering with routing protocol for real time disaster management(EAMCR-RTDM).The proposed EAMCR-RTDM technique mainly intends to manage the energy utilization of nodes with the consideration of the features of the disaster region.To achieve this,EAMCR-RTDM technique primarily designs a yellow saddle goatfish based clustering(YSGF-C)technique to elect cluster heads(CHs)and organize clusters.In addition,enhanced cockroach swarm optimization(ECSO)based multihop routing(ECSO-MHR)approach was derived for optimal route selection.The YSGF-C and ECSO-MHR techniques compute fitness functions using different input variables for achieving improved energy efficiency and network lifetime.The design of YSGF-C and ECSO-MHR techniques for disaster management in IoT networks shows the novelty of the work.For examining the improved outcomes of the EAMCR-RTDM system,a wide range of simulations were performed and the extensive results are assessed in terms of different measures.The comparative outcomes highlighted the enhanced outcomes of the EAMCRRTDM algorithm over the existing approaches.展开更多
This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers i...This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers is not countably infinite. Likewise, countably infinite tree structures could represent all real numbers, and all points in any number of dimensions in multi-dimensional spaces. The objective of this paper is not to overturn previous research based on Cantor’s argument, but to suggest that this situation may be treated as a definitional or axiomatic choice. This paper proposes a “non-Cantorian” branch of cardinality theory, representing all these infinities with countably infinite tree structures. This approach would be consistent with the Continuum Hypothesis.展开更多
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.
基金This work was supported by the National Natural Science Foundation of China(Grant No.62071248)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.
文摘A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.
文摘Background: Sub arachnoid block (SAB) performed by traditional landmark palpation technique can be inaccurate. This problem is exacerbated by altered patient anatomy due to obesity and age-related changes. A pre-procedural ultrasound scan of the lumbar spine has been shown to be of benefit in guiding lumbar epidural insertion in obstetric patients. Information on the use of real-time ultrasound (RUS) guided SAB, to date, been limited. This study compared RUS guided SAB to traditional landmark guided technique in patients undergoing spinal anesthesia for different surgical procedures. Methods: This was a prospective, single center, comparative observational study conducted in the department of anesthesiology at our center. 560 patients who underwent spinal anesthesia either by landmark based technique or real-time ultrasound-guided methods. The primary outcome was the first attempt success rate of dural puncture when employing the two methods. Results: Baseline characteristics were similar in the two study groups. The first attempt success rate of dural puncture in landmark guided group was 64.3% compared to 72.6% in the ultrasound guided group. This difference was not statistically significant. The procedure performance time was significantly shorter with landmark palpation compared to use of real-time ultrasound guided method. Conclusion: Use of RUS-guided technique does not significantly improve the first attempt success rate of SAB dural puncture during spinal anesthesia compared to the traditional landmark-guided technique.
文摘The digital economy has infused vitality into the transformation and development of the real economy,urging enterprises to break through core technological barriers,address bottleneck issues,and improve their core competitiveness.It fosters the comprehensive digital transformation of agriculture,manufacturing,and service sectors,improving the dynamism of the real economy and fostering more consumption hotspots.Efforts are underway to enhance industrial supply chains and innovation chains,optimize regional resource allocation,and promote a virtuous cycle within the real economy.Initiatives are being undertaken to standardize the development of digital economic platforms,promote the high-quality development of regional economies,and leverage the advantages of the socialist market economy with Chinese characteristics.
文摘Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.
基金The research was funded by VSB-Technical University of Ostrava,the SGS Projects SP2022/58,SP2023/008.Huanyu Li,Ing.,Economic Faculty,VSB-TUO,Ostrava,Czech Republic。
文摘Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.
基金supported by grants from the National Natural Science Foundation of China(No.81872375 and 82172863)the Natural Science Foundation of Guangdong Province(No.2021A1515010118).
文摘objective:Two cycles of induction chemotherapy(IC)followed by 2 cycles of platinum-based concurrent chemoradiotherapy(CCRT)(2IC+2CCRT)for locoregionally advanced nasopharyngeal carcinoma(LA-NPC)is widely adopted but not evidence-confirmed.This study aimed to determine the clinical value of 2IC+2CCRT regarding efficacy,toxicity and cost-effectiveness.Methods:This real-world study from two epidemic centers used propensity score matching(PSM)and inverse probability of treatment weighting(IPTW)analyses.The enrolled patients were divided into three groups based on treatment modality:Group A(2IC+2CCRT),Group B(3IC+2CCRT or 2IC+3CCRT)and Group C(3IC+3CCRT).Long-term survival,acute toxicities and cost-effectiveness were compared among the groups.We developed a prognostic model dividing the population into high-and low-risk cohorts,and survivals including overall survival(OS),progression-free survival(PFS),distant metastasis-free survival(DMFS)and locoregional relapse-free survival(LRRFS)were compared among the three groups according to certain risk stratifications.Results:Of 4,042 patients,1,175 were enrolled,with 660,419,and 96 included in Groups A,B and C,respectively.Five-year survivals were similar among the three groups after PSM and confirmed by IPTW.Grade 3-4 neutropenia and leukocytopenia were significantly higher in Groups C and B than in Group A(52.1%vs.41.5%vs.25.2%;41.7%vs.32.7%vs.25.0%)as were grade 3-4 nausea/vomiting and oral mucositis(29.2%vs.15.0%vs.6.1%;32.3%vs.25.3%vs.18.0%).Cost-effective analysis suggested that 2IC+2CCRT was the least expensive,while the health benefits were similar to those of the other groups.Further exploration showed that 2IC+2CCRT tended to be associated with a shorter PFS in high-risk patients,while 3IC+3CCRT potentially contributed to poor PFS in low-risk individuals,mainly reflected by LRRFS.Conclusions:In LA-NPC patients,2IC+2CCRT was the optimal choice regarding efficacy,toxicity and costeffectiveness;however,2IC+2CCRT and 3IC+3CCRT probably shortened LRRFS in high-and low-risk populations,respectively.
文摘To better understand the potential and limitations of the tokenization of real asset mar-kets,empirical studies need to examine this radically new organization of financial mar-kets.In our study,we examine the financial and economic consequences of tokenizing 58 residential rental properties in the US,particularly those in Detroit.Tokenization aims at fragmented ownership.We found that the residential properties examined have 254 owners on average.Investors with a greater than USD 5,000 investment in real estate tokens,diversify their real estate ownership across properties within and across the cities.Property ownership changes about once yearly,with more changes for proper-ties on decentralized exchanges.We report that real estate token prices move accord-ing to the house price index;hence,investing in real estate tokens provides economic exposure to residential house prices.
基金supported by cooperation projects between an enterprise(CNPE)and a research institute(ASIPP)(Y15HX16706).
文摘Nuclear security usually requires the simultaneous detection of neutrons and gamma rays.With the development of crystalline materials in recent years,Cs2LiLaBr6(CLLB)dual-readout detectors have attracted extensive attention from researchers,where real-time neutron/gamma pulse discrimination is the critical factor among detector performance parameters.This study investigated the discrimination performance of the charge comparison,amplitude comparison,time comparison,and pulse gradient_(m)ethods and the effects of a Sallen–Key filter on their performance.Experimental results show that the figure of merit(FOM)of all four methods is improved by proper filtering.Among them,the charge comparison method exhibits excellent noise resistance;moreover,it is the most_(s)uitable method of real-time discrimination for CLLB detectors.However,its discrimination performance depends on the parameters t_(s),t_(m),and t_(e).When t_(s)corresponds to the moment at which the pulse is at 10%of its peak value,t_(e)requires a delay of only 640–740 ns compared to t_(s),at which time the potentially optimal FOM of the charge comparison method at 3.1–3.3 MeV is greater than 1.46.The FOM obtained using the t_(m)value calculated by a proposed maximized discrimination difference model(MDDM)and the potentially optimal FOM differ by less than 3.9%,indicating that the model can provide good guidance for parameter selection in the charge comparison method.
基金supported by the Scientific and Technological Research and Development Plan of China Railway Beijing Group Co.,Ltd.(2022CT01).
文摘Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on the investigation of the requirements of railway real estate management and operation,combined with Beidou positioning,GIS(Geographic Information System),multi-source data fusion and other cutting-edge technologies,this paper puts forward the multi-dimensional dynamic statistical method of real estate information,the identification method of railway land occupation and the comprehensive evaluation method of real estate development and utilization potential,and build the railway real estate supervision and operation platform,design the function of the platform,so as to provide intelligent solutions for the railway real estate operation.
基金supported by the National Natural Science Foundation of China(Grant Nos.72171182 and 72031009)the Spanish Ministry of Economy and Competitiveness through the Spanish National Research Project(Grant No.PGC2018-099402-B-I00)the Spanish postdoctoral fellowship program Ramon y Cajal(Grant No.RyC-2017-21978).
文摘Credit risk assessment involves conducting a fair review and evaluation of an assessed subject’s solvency and creditworthiness.In the context of real estate enterprises,credit risk assessment provides a basis for banks and other financial institutions to choose suitable investment objects.Additionally,it encourages real estate enterprises to abide by market norms and provide reliable information for the standardized management of the real estate industry.However,Chinese real estate companies are hesitant to disclose their actual operating data due to privacy concerns,making subjective evalu-ation approaches inevitable,occupying important roles in accomplishing Chinese real estate enterprise credit risk assessment tasks.To improve the normative and reliability of credit risk assessment for Chinese real estate enterprises,this study proposes an integrated multi-criteria group decision-making approach.First,a credit risk assessment index for Chinese real estate enterprises is established.Then,the proposed framework combines proportional hesitant fuzzy linguistic term sets and preference ranking organization method for enrichment evaluation II methods.This approach is suitable for processing large amounts of data with high uncertainty,which is often the case in credit risk assessment tasks of Chinese real estate enterprises involving massive subjec-tive evaluation information.Finally,the proposed model is validated through a case study accompanied by sensitivity and comparative analyses to verify its rationality and feasibility.This study contributes to the research on credit assessment for Chinese real estate enterprises and provides a revised paradigm for real estate enterprise credit risk assessment.
文摘There has been disagreement over the value of purchasing space in the metaverse, but many businesses including Nike, The Wendy’s Company, and McDonald’s have jumped in headfirst. While the metaverse land rush has been called an “illusion” given underdeveloped infrastructure, including inadequate software and servers, and the potential opportunities for economic and legal abuse, the “real estate of the future” shows no signs of slowing. While the current virtual space of the metaverse is worth $6.30 billion, that is expected to grow to $84.09 billion by the end of 2028. But the long-term legal and regulatory considerations of capitalizing on the investment, as well as the manner in which blockchain technology can secure users’ data and digital assets, has yet to be properly investigated. With the metaverse still in a conceptual phase, building a new 3D social environment capable of digital transactions will represent most of the initial investment in time in human capital. Digital twin technologies, already well-established in industry, will be ported to support the need to architect and furnish the new digital world. The return on and viability of investing in the “real estate of the future” raises questions fundamental to the success or failure of the enterprise. As such this paper proposes a novel framing of the issue and looks at the intersection where finance, technology, and law are converging to prevent another Dot-com bubble of the late 1990s in metaverse-based virtual real estate transactions. Furthermore, the paper will argue that these domains are technologically feasible, but the main challenges for commercial users remain in the legal and regulatory arenas. As has been the case with the emergence of online commerce, a legal assessment of the metaverse indicates that courts will look to traditional and established legal principles when addressing issues until the enactment of federal and/or state statutes and accompanying regulations. Lastly, whereas traditional regulation of real estate would involve property law, the current legal framing of ownership of metaverse assets is governed by contract law.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.12075308).
文摘The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.
基金supported by Ulsan Metropolitan City-ETRI joint cooperation project[21AS1600,Development of intelligent technology for key industriesautonomous human-mobile-space autonomous collaboration intelligence technology].
文摘In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization of nodes in real time wireless networks helps to improve the overall functioning of networks.This study presents an Improved Metaheuristics based Energy Efficient Clustering with Node Localization(IM-EECNL)approach for real-time wireless networks.The proposed IM-EECNL technique involves two major processes namely node localization and clustering.Firstly,Chaotic Water Strider Algorithm based Node Localization(CWSANL)technique to determine the unknown position of the nodes.Secondly,an Oppositional Archimedes Optimization Algorithm based Clustering(OAOAC)technique is applied to accomplish energy efficiency in the network.Besides,the OAOAC technique derives afitness function comprising residual energy,distance to cluster heads(CHs),distance to base station(BS),and load.The performance validation of the IM-EECNL technique is carried out under several aspects such as localization and energy efficiency.A wide ranging comparative outcomes analysis highlighted the improved performance of the IM-EECNL approach on the recent approaches with the maximum packet delivery ratio(PDR)of 0.985.
文摘Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time.This work proposes an adap-tive learning algorithm-based framework,Twitter Sentiment Drift Analysis-Bidir-ectional Encoder Representations from Transformers(TSDA-BERT),which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant data in real time.The framework also works on static data by converting them to data streams using the Kafka tool.The experiments conducted on real time and simulated tweets of sports,health care andfinancial topics show that the proposed system is able to detect sentiment drifts and maintain the performance of the classification model,with accuracies of 91%,87%and 90%,respectively.Though the results have been provided only for a few topics,as a proof of concept,this framework can be applied to detect sentiment drifts and perform sentiment classification on real time data streams of any topic.
基金This research has been funded by Dirección General de Investigaciones of Universidad Santiago de Cali under call No.01–2021.
文摘Wireless Sensor Networks(WSNs)are a major element of Internet of Things(IoT)networks which offer seamless sensing and wireless connectivity.Disaster management in smart cities can be considered as a safety critical application.Therefore,it becomes essential in ensuring network accessibility by improving the lifetime of IoT assisted WSN.Clustering and multihop routing are considered beneficial solutions to accomplish energy efficiency in IoT networks.This article designs an IoT enabled energy aware metaheuristic clustering with routing protocol for real time disaster management(EAMCR-RTDM).The proposed EAMCR-RTDM technique mainly intends to manage the energy utilization of nodes with the consideration of the features of the disaster region.To achieve this,EAMCR-RTDM technique primarily designs a yellow saddle goatfish based clustering(YSGF-C)technique to elect cluster heads(CHs)and organize clusters.In addition,enhanced cockroach swarm optimization(ECSO)based multihop routing(ECSO-MHR)approach was derived for optimal route selection.The YSGF-C and ECSO-MHR techniques compute fitness functions using different input variables for achieving improved energy efficiency and network lifetime.The design of YSGF-C and ECSO-MHR techniques for disaster management in IoT networks shows the novelty of the work.For examining the improved outcomes of the EAMCR-RTDM system,a wide range of simulations were performed and the extensive results are assessed in terms of different measures.The comparative outcomes highlighted the enhanced outcomes of the EAMCRRTDM algorithm over the existing approaches.
文摘This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers is not countably infinite. Likewise, countably infinite tree structures could represent all real numbers, and all points in any number of dimensions in multi-dimensional spaces. The objective of this paper is not to overturn previous research based on Cantor’s argument, but to suggest that this situation may be treated as a definitional or axiomatic choice. This paper proposes a “non-Cantorian” branch of cardinality theory, representing all these infinities with countably infinite tree structures. This approach would be consistent with the Continuum Hypothesis.