The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are sum...The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are summarized. The identification and reconstruction of real time traffic data are analyzed using Kalman filter equation and statistical approach. Four methods for ITS (Intelligent transportation system) detector data screening in traffic management systems are discussed in detail. Meanwhile traffic data examinations are discussed with solutions formulated through analysis, and recommendations are made for information collection and data management in future.展开更多
this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of t...this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.展开更多
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource effic...Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.展开更多
In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Opti...In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.展开更多
针对目标检测算法在交通标志检测中存在的不足,文中提出了一种融合感受野增强模块和注意力机制的交通标志检测算法。该算法在YOLOv5(You Only Look Once version 5)算法的基础上改进,选用感受野模块(Receptive Field Block,RFB)替换原...针对目标检测算法在交通标志检测中存在的不足,文中提出了一种融合感受野增强模块和注意力机制的交通标志检测算法。该算法在YOLOv5(You Only Look Once version 5)算法的基础上改进,选用感受野模块(Receptive Field Block,RFB)替换原骨干网络中的空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,在特征融合网络中嵌入高效通道注意模块(Efficient Channel Attention Module,ECAM)和卷积块注意模块(Convolutional Block Attention Module,CBAM),选用矩阵非极大值抑制(Matrix Non-Maximum Suppression,Matrix NMS)筛选候选框以提升算法的检测精度和检测速度。实验结果表明,在模型参数量与原网络相比未变化的前提下,该算法的均值平均精度达到了82.31%,与原算法相比提升了8.59%,检测速度达到了51.89 frame·s^(-1),且该算法在各个测试场景中未出现错检漏检现象,证明其泛化能力优于原算法,可以实时检测交通标志。展开更多
文摘The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are summarized. The identification and reconstruction of real time traffic data are analyzed using Kalman filter equation and statistical approach. Four methods for ITS (Intelligent transportation system) detector data screening in traffic management systems are discussed in detail. Meanwhile traffic data examinations are discussed with solutions formulated through analysis, and recommendations are made for information collection and data management in future.
文摘this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.
文摘Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
文摘In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.
文摘针对目标检测算法在交通标志检测中存在的不足,文中提出了一种融合感受野增强模块和注意力机制的交通标志检测算法。该算法在YOLOv5(You Only Look Once version 5)算法的基础上改进,选用感受野模块(Receptive Field Block,RFB)替换原骨干网络中的空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,在特征融合网络中嵌入高效通道注意模块(Efficient Channel Attention Module,ECAM)和卷积块注意模块(Convolutional Block Attention Module,CBAM),选用矩阵非极大值抑制(Matrix Non-Maximum Suppression,Matrix NMS)筛选候选框以提升算法的检测精度和检测速度。实验结果表明,在模型参数量与原网络相比未变化的前提下,该算法的均值平均精度达到了82.31%,与原算法相比提升了8.59%,检测速度达到了51.89 frame·s^(-1),且该算法在各个测试场景中未出现错检漏检现象,证明其泛化能力优于原算法,可以实时检测交通标志。