We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with sol...We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.展开更多
For a conservation law with convex condition and initial data in L∞(R), it had been commonly believed that the number of discontinuity lines (or shock waves) of the solution is at most countable since Theorem 1 in Ol...For a conservation law with convex condition and initial data in L∞(R), it had been commonly believed that the number of discontinuity lines (or shock waves) of the solution is at most countable since Theorem 1 in Oleinik's seminal paper published in 1956 asserted this fact. In 1977, the author gave an example to show that there is an initial data in C∞(R) ∩ L∞(R) such that the number of shock waves is uncountable. And in 1980, he gave an example to show that there is an initial data in C(R)∩L∞(R) such that the measure of original points of shock waves on the real axis is positive. In this paper, he proves further that the set consisting of initial data in C(R) ∩ L∞(R) with the property: almost all points on the real axis are original points of shock waves, is dense in C(R) ∩ L∞(R). All these results show that Oleinik's assertion on the countability of discontinuity lines is wrong.展开更多
Under the appropriate hypotheses subject to the unknown function and the free term, by means of our Lemma, we prove the rationality of order at x = ∞ on two sides for the characteristic singular integral equations wi...Under the appropriate hypotheses subject to the unknown function and the free term, by means of our Lemma, we prove the rationality of order at x = ∞ on two sides for the characteristic singular integral equations with solutions having singularities of higher order on the real axis X. We transform the equations into solving equivalent Riemann boundary value problems with solutions having singularities of higher order and with additional conditions on X. The solutions and the solvable conditions for the former are obtained from the latter.展开更多
基金Supported by the NNSF of China (10471107)RFDP of Higher Education of China (20060486001)
文摘We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.
基金supported by National Natural Science Foundation of China (Grant No.10771206)
文摘For a conservation law with convex condition and initial data in L∞(R), it had been commonly believed that the number of discontinuity lines (or shock waves) of the solution is at most countable since Theorem 1 in Oleinik's seminal paper published in 1956 asserted this fact. In 1977, the author gave an example to show that there is an initial data in C∞(R) ∩ L∞(R) such that the number of shock waves is uncountable. And in 1980, he gave an example to show that there is an initial data in C(R)∩L∞(R) such that the measure of original points of shock waves on the real axis is positive. In this paper, he proves further that the set consisting of initial data in C(R) ∩ L∞(R) with the property: almost all points on the real axis are original points of shock waves, is dense in C(R) ∩ L∞(R). All these results show that Oleinik's assertion on the countability of discontinuity lines is wrong.
基金Supported by the National Natural Science Foundation of China (10471107)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060486001)
文摘Under the appropriate hypotheses subject to the unknown function and the free term, by means of our Lemma, we prove the rationality of order at x = ∞ on two sides for the characteristic singular integral equations with solutions having singularities of higher order on the real axis X. We transform the equations into solving equivalent Riemann boundary value problems with solutions having singularities of higher order and with additional conditions on X. The solutions and the solvable conditions for the former are obtained from the latter.