期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new technique for solving the multi-objective optimization problem using hybrid approach 被引量:1
1
作者 Mimoun YOUNES Khodja FOUAD Belabbes BAGDAD 《Frontiers in Energy》 SCIE CSCD 2014年第4期490-503,共14页
Energy efficiency, which consists of using less energy or improving the level of service to energy consumers, refers to an effective way to provide overall energy. But its increasing pressure on the energy sector to c... Energy efficiency, which consists of using less energy or improving the level of service to energy consumers, refers to an effective way to provide overall energy. But its increasing pressure on the energy sector to control greenhouse gases and to reduce CO2 emissions forced the power system operators to consider the emission problem as a consequential matter besides the economic problems. The economic power dispatch problem has, therefore, become a multi-objective optimization problem. Fuel cost, pollutant emissions, and system loss should be minimized simultaneously while satisfying certain system constraints. To achieve a good design with different solutions in a multi-objective optimization problem, fuel cost and pollutant emissions are converted into single optimization problem by introducing penalty factor. Now the power dispatch is formulated into a hi-objective optimization problem, two objectives with two algorithms, firefly algorithm for optimization the fuel cost, pollutant emissions and the real genetic algorithm for minimization of the transmission losses. In this paper the new approach (firefly algorithm-real genetic algorithm, FFA-RGA) has been applied to the standard IEEE 30-bus 6-generator. The effectiveness of the proposed approach is demonstrated by comparing its performance with other evolutionary multi- objective optimization algorithms. Simulation results show the validity and feasibility of the proposed method. 展开更多
关键词 economic power dispatch (EPD) firefly algo- rithm (FFA) real genetic algorithm (RGA) hybrid method
原文传递
Optimal Design of Fuzzy-AGC Based on PSO&RCGA to Improve Dynamic Stability of Interconnected Multi-area Power Systems 被引量:1
2
作者 Ali Darvish Falehi 《International Journal of Automation and computing》 EI CSCD 2020年第4期599-609,共11页
Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this r... Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations. 展开更多
关键词 Power system dynamic stability fuzzy logic automatic generation control(FLAGC) particle swarm optimization(PSO) real coded genetic algorithm(RCGA) simultaneous coordination scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部