This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Individuals may gather information about environmental conditions when deciding where to breed in order to maximize their lifetime fitness.They can obtain social information by observing conspecifics and heterospecifi...Individuals may gather information about environmental conditions when deciding where to breed in order to maximize their lifetime fitness.They can obtain social information by observing conspecifics and heterospecifics with similar ecological needs.Many studies have shown that birds can rely on social information to select their nest sites.The location of active nests and the reproductive success of conspecifics and heterospecifics can provide accurate predictions about the quality of the breeding habitat.Some short-lived species can facultatively reproduce two and/or more times within a breeding season.However,few studies have focused on how multiplebrooding individuals select nest sites for their second breeding attempts.In this study,we use long-term data to test whether the Japanese Tit(Parus minor)can use social information from conspecifics and/or heterospecifics(the Eurasian Nuthatch Sitta europaea,the Daurian Redstart Phoenicurus auroreus and the Yellow-rumped Flycatcher Ficedula zanthopygia)to select a nest site for the second breeding attempt.Our results showed that the nest boxes occupied by tits on their second breeding attempt tended to be surrounded by more breeding conspecific nests,successful first nests of conspecifics,and fewer failed first nests of conspecifics than the nest boxes that remained unoccupied(the control group).However,the numbers of breeding heterospecific nests,successful heterospecific nests,and failed heterospecific nests did not differ between the nest boxes occupied by tits on their second breeding attempt and the unoccupied nest boxes.Furthermore,the tits with local successful breeding experience tended to choose areas with more successful first nests of conspecifics than those without successful breeding experience.Thus,we suggest that conspecifics'but not heterospecifics'social information within the same breeding season is the major factor influencing the nest site selection of Japanese Tits during second breeding attempts.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc...Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.展开更多
This study investigates how cognitive psychology principles can be integrated into the information architecture design of short-form video platforms,like TikTok,to enhance user experience,engagement,and sharing.Using ...This study investigates how cognitive psychology principles can be integrated into the information architecture design of short-form video platforms,like TikTok,to enhance user experience,engagement,and sharing.Using a questionnaire,it explores TikTok users’habits and preferences,highlighting how social media fatigue(SMF)impacts their interaction with the platform.The paper offers strategies to optimize TikTok’s design.It suggests refining the organizational system using principles like chunking,schema theory,and working memory capacity.Additionally,it proposes incorporating shopping features within TikTok’s interface to personalize product suggestions and enable monetization for influencers and content creators.Furthermore,the study underlines the need to consider gender differences and user preferences in improving TikTok’s sharing features,recommending streamlined and customizable sharing options,collaborative sharing,and a system to acknowledge sharing milestones.Aiming to strengthen social connections and increase sharing likelihood,this research provides insights into enhancing information architecture for short-form video platforms,contributing to their growth and success.展开更多
With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to mult...With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to multimodalinformation exchange and fusion, with many methods attempting to integrate unimodal features to generatemultimodal news representations. However, they still need to fully explore the hierarchical and complex semanticcorrelations between different modal contents, severely limiting their performance detecting multimodal falseinformation. This work proposes a two-stage detection framework for multimodal false information detection,called ASMFD, which is based on image aesthetic similarity to segment and explores the consistency andinconsistency features of images and texts. Specifically, we first use the Contrastive Language-Image Pre-training(CLIP) model to learn the relationship between text and images through label awareness and train an imageaesthetic attribute scorer using an aesthetic attribute dataset. Then, we calculate the aesthetic similarity betweenthe image and related images and use this similarity as a threshold to divide the multimodal correlation matrixinto consistency and inconsistencymatrices. Finally, the fusionmodule is designed to identify essential features fordetectingmultimodal false information. In extensive experiments on four datasets, the performance of the ASMFDis superior to state-of-the-art baseline methods.展开更多
This paper aims to present the experience gathered in the Italian alpine city of Bolzano within the project“Bolzano Traffic”whose goal is the introduction of an experimental open ITS platform for local service provi...This paper aims to present the experience gathered in the Italian alpine city of Bolzano within the project“Bolzano Traffic”whose goal is the introduction of an experimental open ITS platform for local service providers,fostering the diffusion of advanced traveller information services and the future deployment of cooperative mobility systems in the region.Several end-users applications targeted to the needs of different user groups have been developed in collaboration with local companies and research centers;a partnership with the EU Co-Cities project has been activated as well.The implemented services rely on real-time travel and traffic information collected by urban traffic monitoring systems or published by local stakeholders(e.g.public transportation operators).An active involvement of end-users,who have recently started testing these demo applications for free,is actually on-going.展开更多
Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detectio...Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.展开更多
The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage de...The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.展开更多
Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background...Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.展开更多
In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real...In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real-time information transmission network, and combined with the local world evolving characteristics in complex network, then the statistical topological properties of the network is obtained by numerical simulation. Furthermore, we simulated the process of information transmission on the network, according to the actual characteristics of the online real-time information transmission. Statistics show that the degree distribution presents the characteristics of scale free network, presenting power law distribution, while the average path length, the average clustering coefficient and the average size of the network also has a power-law relationship, moreover, the model parameters has no effect on power-law exponent. The spread of information on the network represents obvious fluctuation scaling, reflecting the characteristics that information transmission fluctuates over time.展开更多
This paper evaluates impacts of the real-time information from the smartphone APP and the real-time information board at bus stops on bus users with survey data. Through the analysis of data with t-test and linear reg...This paper evaluates impacts of the real-time information from the smartphone APP and the real-time information board at bus stops on bus users with survey data. Through the analysis of data with t-test and linear regression, it is found that the waiting time of bus riders with real-time information from the smartphone APP is much less than that of bus riders without the real-time information. As to the perceived waiting time of bus users, through the linear regression, the study finds that without the real-time information, bus riders’ perceived waiting time is greater than waiting time. At the same time, the perceived waiting time of bus users with real-time information is only slightly larger than their waiting time. Through regressing anxiety on real-time information, perceived waiting time and so on, it is found that real-time information reduces anxiety remarkably.展开更多
The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving sy...The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone.展开更多
Taking Nanjing as a case, the paper explains the spatial behavior differences existing in the information technology use among different groups of residents and households, by virtue of analyzing the survey data of ur...Taking Nanjing as a case, the paper explains the spatial behavior differences existing in the information technology use among different groups of residents and households, by virtue of analyzing the survey data of urban households in the 11 districts of Nanjing, from the social, spatial, life and other non-technical angles. Also it makes various analyses and evaluation quantitatively and qualitatively on the social and spatial effect of information technology. The results show that the new technology is changing the social spatial behaviors of urban residents. New behavioral spaces of urban family such as telecommuting, email and QQ have begun to emerge. With the help of Internet, the communication scope of families has expanded greatly, and more new forms of publicizing community information have begun to emerge. Telecommunication contact forms have been developing swiftly, and their frequencies of contact have been increasing dramatically.展开更多
In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behav...In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring.展开更多
Background/purpose:With increasing accessibility to the Internet,patients frequently use the Internet for hearing healthcare information.No study has examined the information about hearing loss available in the Mandar...Background/purpose:With increasing accessibility to the Internet,patients frequently use the Internet for hearing healthcare information.No study has examined the information about hearing loss available in the Mandarin language on online video-sharing platforms.The study’s primary purpose is to investigate the content,source,understandability,and actionability of hearing loss information in the Mandarin language’s one hundred most popular online videos.Method:In this project,publicly accessible online videos were analyzed.One hundred of the most popular Mandarin-language videos about hearing loss were identified(51 videos on YouTube and 49 on the Bilibili video-sharing platform).They were manually coded for different popularity metrics,sources,and content.Each video was also rated using the Patient Education Materials Assessment Tool for Audiovisual Materials(PEMAT-AV)to measure the understandability and actionability scores.Results:The video sources were classified as either media(n=36),professional(n=39),or consumer(n=25).The videos covered various topics,including symptoms,consequences,and treatment of hearing loss.Overall,videos attained adequate understandability scores(mean=73.6%)but low(mean=43.4%)actionability scores.Conclusions:While existing online content related to hearing loss is quite diverse and largely understandable,those videos provide limited actionable information.Hearing healthcare professionals,media,and content creators can help patients better understand their conditions and make educated hearing healthcare decisions by focusing on the actionability information in their online videos.展开更多
Purpose: We aim to create a model of consumer health information seeking behavior via social media, then to have a better understand of it. After that further efforts should be made to provide targeted recommendations...Purpose: We aim to create a model of consumer health information seeking behavior via social media, then to have a better understand of it. After that further efforts should be made to provide targeted recommendations for media managers to promote health communication via social media. Methods: Our custom model was derived from literature review, empirical research was tested by the use of questionnaire investigation, and then the collected data were analyzed by structural equation model tool SmartPLS. Finally, the custom model was modified according to the experimental results of SmartPLS. Results: A total of 239 (66.39%) of the respondents were female and 121 (33.61%) were male. The maximum of two stages of age were 18 - 29 (70.56%), 30 - 39 (13.89%). Wechat (60.28%), QQ Zone (55.22%), Micro-blog (48.89%) were the most commonly used social media to obtain health information. About 44.72% of respondents used social media to obtain health information multiple times a day. The whole numerical values of AVE, cronbach’s alpha, CR and square roots of AVE were above the benchmarks of themselves and showed great reliability and validity. All the 11 hypotheses had obvious statistical significance, the P-value of eight path coefficients exhibited <0.001, one path coefficient exhibited <0.01 and two path coefficients exhibited <0.05. Conclusions: A suitable model of consumer health information seeking behavior via social media was created and some inner relationships were found. Namely, gratification of health information and its platform had a positive effect on attitudes toward health information seeking behavior. Health information literacy and health status were proved to have a significant influence on attitudes toward health information seeking behavior, subject norms and perceived behavioral control respectively. In addition, attitudes toward the health information seeking behavior, subject norms and perceived behavioral control were proved to positively associate with health information seeking behavior intention.展开更多
The objectives of the present study are to put forth the concept of corporate social responsibility (CSR) in Turkey (Kayseri) and to examine research on this concept and the relationships between CSR and accountin...The objectives of the present study are to put forth the concept of corporate social responsibility (CSR) in Turkey (Kayseri) and to examine research on this concept and the relationships between CSR and accounting information systems. Research data were gathered from 100 accounting managers who work in businesses with 250 or more employees in Kayseri. The dimensions of CSR were considered as business policies, environmental policies, market policies, and social policies, and the effects of these factors on accounting information systems were tested. Market policies and social policies dimensions of CSR had no significant impact on accounting information systems. Business policies and environmental policies dimensions of CSR had significant impacts on accounting information systems. Two basic conclusions were drawn from the current study: The business policy dimension of CSR had significant impacts on accounting information systems; the business policy and environmental policy dimensions of CSR together had significant impacts on accounting intbrmation systems.展开更多
In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely f...In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely fully analyzed,which is a major obstacle to the intelligent development of the social IoT.In this paper,we propose a sentence similarity analysis model to analyze the similarity in people’s opinions on hot topics in social media and news pages.Most of these data are unstructured or semi-structured sentences,so the accuracy of sentence similarity analysis largely determines the model’s performance.For the purpose of improving accuracy,we propose a novel method of sentence similarity computation to extract the syntactic and semantic information of the semi-structured and unstructured sentences.We mainly consider the subjects,predicates and objects of sentence pairs and use Stanford Parser to classify the dependency relation triples to calculate the syntactic and semantic similarity between two sentences.Finally,we verify the performance of the model with the Microsoft Research Paraphrase Corpus(MRPC),which consists of 4076 pairs of training sentences and 1725 pairs of test sentences,and most of the data came from the news of social data.Extensive simulations demonstrate that our method outperforms other state-of-the-art methods regarding the correlation coefficient and the mean deviation.展开更多
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金financed by the National Natural Science Foundation of China(31971402 to H.Wang,32001094 to J.Yu,31870368 to K.Zhang)the High-level Startup Talents Introduced Scientific Research Fund Project of Baotou Teacher's College,China(No.BTTCRCQD2024-C34)。
文摘Individuals may gather information about environmental conditions when deciding where to breed in order to maximize their lifetime fitness.They can obtain social information by observing conspecifics and heterospecifics with similar ecological needs.Many studies have shown that birds can rely on social information to select their nest sites.The location of active nests and the reproductive success of conspecifics and heterospecifics can provide accurate predictions about the quality of the breeding habitat.Some short-lived species can facultatively reproduce two and/or more times within a breeding season.However,few studies have focused on how multiplebrooding individuals select nest sites for their second breeding attempts.In this study,we use long-term data to test whether the Japanese Tit(Parus minor)can use social information from conspecifics and/or heterospecifics(the Eurasian Nuthatch Sitta europaea,the Daurian Redstart Phoenicurus auroreus and the Yellow-rumped Flycatcher Ficedula zanthopygia)to select a nest site for the second breeding attempt.Our results showed that the nest boxes occupied by tits on their second breeding attempt tended to be surrounded by more breeding conspecific nests,successful first nests of conspecifics,and fewer failed first nests of conspecifics than the nest boxes that remained unoccupied(the control group).However,the numbers of breeding heterospecific nests,successful heterospecific nests,and failed heterospecific nests did not differ between the nest boxes occupied by tits on their second breeding attempt and the unoccupied nest boxes.Furthermore,the tits with local successful breeding experience tended to choose areas with more successful first nests of conspecifics than those without successful breeding experience.Thus,we suggest that conspecifics'but not heterospecifics'social information within the same breeding season is the major factor influencing the nest site selection of Japanese Tits during second breeding attempts.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
基金supported by the National Natural Science Foundation of China(Nos.62006001,62372001)the Natural Science Foundation of Chongqing City(Grant No.CSTC2021JCYJ-MSXMX0002).
文摘Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.
文摘This study investigates how cognitive psychology principles can be integrated into the information architecture design of short-form video platforms,like TikTok,to enhance user experience,engagement,and sharing.Using a questionnaire,it explores TikTok users’habits and preferences,highlighting how social media fatigue(SMF)impacts their interaction with the platform.The paper offers strategies to optimize TikTok’s design.It suggests refining the organizational system using principles like chunking,schema theory,and working memory capacity.Additionally,it proposes incorporating shopping features within TikTok’s interface to personalize product suggestions and enable monetization for influencers and content creators.Furthermore,the study underlines the need to consider gender differences and user preferences in improving TikTok’s sharing features,recommending streamlined and customizable sharing options,collaborative sharing,and a system to acknowledge sharing milestones.Aiming to strengthen social connections and increase sharing likelihood,this research provides insights into enhancing information architecture for short-form video platforms,contributing to their growth and success.
文摘With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to multimodalinformation exchange and fusion, with many methods attempting to integrate unimodal features to generatemultimodal news representations. However, they still need to fully explore the hierarchical and complex semanticcorrelations between different modal contents, severely limiting their performance detecting multimodal falseinformation. This work proposes a two-stage detection framework for multimodal false information detection,called ASMFD, which is based on image aesthetic similarity to segment and explores the consistency andinconsistency features of images and texts. Specifically, we first use the Contrastive Language-Image Pre-training(CLIP) model to learn the relationship between text and images through label awareness and train an imageaesthetic attribute scorer using an aesthetic attribute dataset. Then, we calculate the aesthetic similarity betweenthe image and related images and use this similarity as a threshold to divide the multimodal correlation matrixinto consistency and inconsistencymatrices. Finally, the fusionmodule is designed to identify essential features fordetectingmultimodal false information. In extensive experiments on four datasets, the performance of the ASMFDis superior to state-of-the-art baseline methods.
文摘This paper aims to present the experience gathered in the Italian alpine city of Bolzano within the project“Bolzano Traffic”whose goal is the introduction of an experimental open ITS platform for local service providers,fostering the diffusion of advanced traveller information services and the future deployment of cooperative mobility systems in the region.Several end-users applications targeted to the needs of different user groups have been developed in collaboration with local companies and research centers;a partnership with the EU Co-Cities project has been activated as well.The implemented services rely on real-time travel and traffic information collected by urban traffic monitoring systems or published by local stakeholders(e.g.public transportation operators).An active involvement of end-users,who have recently started testing these demo applications for free,is actually on-going.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61427802,31727901,61625103,61501032,61471038the Chang Jiang Scholars Program(T2012122)+1 种基金part by the 111 project of China under Grant B14010supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
文摘Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.
文摘The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.
基金The Science and Technoloav Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020-A11-02)is appreciated for supporting this study.
文摘Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.
文摘In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real-time information transmission network, and combined with the local world evolving characteristics in complex network, then the statistical topological properties of the network is obtained by numerical simulation. Furthermore, we simulated the process of information transmission on the network, according to the actual characteristics of the online real-time information transmission. Statistics show that the degree distribution presents the characteristics of scale free network, presenting power law distribution, while the average path length, the average clustering coefficient and the average size of the network also has a power-law relationship, moreover, the model parameters has no effect on power-law exponent. The spread of information on the network represents obvious fluctuation scaling, reflecting the characteristics that information transmission fluctuates over time.
基金Sponsored by the Science and Technology Planning Project of Guangdong Province(Grant No.2017A040405021)
文摘This paper evaluates impacts of the real-time information from the smartphone APP and the real-time information board at bus stops on bus users with survey data. Through the analysis of data with t-test and linear regression, it is found that the waiting time of bus riders with real-time information from the smartphone APP is much less than that of bus riders without the real-time information. As to the perceived waiting time of bus users, through the linear regression, the study finds that without the real-time information, bus riders’ perceived waiting time is greater than waiting time. At the same time, the perceived waiting time of bus users with real-time information is only slightly larger than their waiting time. Through regressing anxiety on real-time information, perceived waiting time and so on, it is found that real-time information reduces anxiety remarkably.
基金supported in part by the National Key RD Program of China (2021YFF0602104-2,2020YFB1804604)in part by the 2020 Industrial Internet Innovation and Development Project from Ministry of Industry and Information Technology of Chinain part by the Fundamental Research Fund for the Central Universities (30918012204,30920041112).
文摘The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40435013, 40301014)
文摘Taking Nanjing as a case, the paper explains the spatial behavior differences existing in the information technology use among different groups of residents and households, by virtue of analyzing the survey data of urban households in the 11 districts of Nanjing, from the social, spatial, life and other non-technical angles. Also it makes various analyses and evaluation quantitatively and qualitatively on the social and spatial effect of information technology. The results show that the new technology is changing the social spatial behaviors of urban residents. New behavioral spaces of urban family such as telecommuting, email and QQ have begun to emerge. With the help of Internet, the communication scope of families has expanded greatly, and more new forms of publicizing community information have begun to emerge. Telecommunication contact forms have been developing swiftly, and their frequencies of contact have been increasing dramatically.
基金sponsored by the National Natural Science Foundation of China under grant number No. 61100008 the Natural Science Foundation of Heilongjiang Province of China under Grant No. LC2016024
文摘In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring.
文摘Background/purpose:With increasing accessibility to the Internet,patients frequently use the Internet for hearing healthcare information.No study has examined the information about hearing loss available in the Mandarin language on online video-sharing platforms.The study’s primary purpose is to investigate the content,source,understandability,and actionability of hearing loss information in the Mandarin language’s one hundred most popular online videos.Method:In this project,publicly accessible online videos were analyzed.One hundred of the most popular Mandarin-language videos about hearing loss were identified(51 videos on YouTube and 49 on the Bilibili video-sharing platform).They were manually coded for different popularity metrics,sources,and content.Each video was also rated using the Patient Education Materials Assessment Tool for Audiovisual Materials(PEMAT-AV)to measure the understandability and actionability scores.Results:The video sources were classified as either media(n=36),professional(n=39),or consumer(n=25).The videos covered various topics,including symptoms,consequences,and treatment of hearing loss.Overall,videos attained adequate understandability scores(mean=73.6%)but low(mean=43.4%)actionability scores.Conclusions:While existing online content related to hearing loss is quite diverse and largely understandable,those videos provide limited actionable information.Hearing healthcare professionals,media,and content creators can help patients better understand their conditions and make educated hearing healthcare decisions by focusing on the actionability information in their online videos.
文摘Purpose: We aim to create a model of consumer health information seeking behavior via social media, then to have a better understand of it. After that further efforts should be made to provide targeted recommendations for media managers to promote health communication via social media. Methods: Our custom model was derived from literature review, empirical research was tested by the use of questionnaire investigation, and then the collected data were analyzed by structural equation model tool SmartPLS. Finally, the custom model was modified according to the experimental results of SmartPLS. Results: A total of 239 (66.39%) of the respondents were female and 121 (33.61%) were male. The maximum of two stages of age were 18 - 29 (70.56%), 30 - 39 (13.89%). Wechat (60.28%), QQ Zone (55.22%), Micro-blog (48.89%) were the most commonly used social media to obtain health information. About 44.72% of respondents used social media to obtain health information multiple times a day. The whole numerical values of AVE, cronbach’s alpha, CR and square roots of AVE were above the benchmarks of themselves and showed great reliability and validity. All the 11 hypotheses had obvious statistical significance, the P-value of eight path coefficients exhibited <0.001, one path coefficient exhibited <0.01 and two path coefficients exhibited <0.05. Conclusions: A suitable model of consumer health information seeking behavior via social media was created and some inner relationships were found. Namely, gratification of health information and its platform had a positive effect on attitudes toward health information seeking behavior. Health information literacy and health status were proved to have a significant influence on attitudes toward health information seeking behavior, subject norms and perceived behavioral control respectively. In addition, attitudes toward the health information seeking behavior, subject norms and perceived behavioral control were proved to positively associate with health information seeking behavior intention.
文摘The objectives of the present study are to put forth the concept of corporate social responsibility (CSR) in Turkey (Kayseri) and to examine research on this concept and the relationships between CSR and accounting information systems. Research data were gathered from 100 accounting managers who work in businesses with 250 or more employees in Kayseri. The dimensions of CSR were considered as business policies, environmental policies, market policies, and social policies, and the effects of these factors on accounting information systems were tested. Market policies and social policies dimensions of CSR had no significant impact on accounting information systems. Business policies and environmental policies dimensions of CSR had significant impacts on accounting information systems. Two basic conclusions were drawn from the current study: The business policy dimension of CSR had significant impacts on accounting information systems; the business policy and environmental policy dimensions of CSR together had significant impacts on accounting intbrmation systems.
基金supported by the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-006partially supported by the Shandong Provincial Natural Science Foundation,China under Grant ZR2020MF006partially supported by“the Fundamental Research Funds for the Central Universities”of China University of Petroleum(East China)under Grant 20CX05017A,18CX02139A.
文摘In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely fully analyzed,which is a major obstacle to the intelligent development of the social IoT.In this paper,we propose a sentence similarity analysis model to analyze the similarity in people’s opinions on hot topics in social media and news pages.Most of these data are unstructured or semi-structured sentences,so the accuracy of sentence similarity analysis largely determines the model’s performance.For the purpose of improving accuracy,we propose a novel method of sentence similarity computation to extract the syntactic and semantic information of the semi-structured and unstructured sentences.We mainly consider the subjects,predicates and objects of sentence pairs and use Stanford Parser to classify the dependency relation triples to calculate the syntactic and semantic similarity between two sentences.Finally,we verify the performance of the model with the Microsoft Research Paraphrase Corpus(MRPC),which consists of 4076 pairs of training sentences and 1725 pairs of test sentences,and most of the data came from the news of social data.Extensive simulations demonstrate that our method outperforms other state-of-the-art methods regarding the correlation coefficient and the mean deviation.