To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ...To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.展开更多
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic prior...To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.展开更多
Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time sched...Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.展开更多
Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling ...Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.展开更多
The proliferation of the global datasphere has forced cloud storage systems to evolve more complex architectures for different applications.The emergence of these application session requests and system daemon service...The proliferation of the global datasphere has forced cloud storage systems to evolve more complex architectures for different applications.The emergence of these application session requests and system daemon services has created large persistent flows with diverse performance requirements that need to coexist with other types of traffic.Current routing methods such as equal-cost multipath(ECMP)and Hedera do not take into consideration specific traffic characteristics nor performance requirements,which make these methods difficult to meet the quality of service(QoS)for high-priority flows.In this paper,we tailored the best routing for different kinds of cloud storage flows as an integer programming problem and utilized grey relational analysis(GRA)to solve this optimization problem.The resulting method is a GRAbased service-aware flow scheduling(GRSA)framework that considers requested flow types and network status to select appropriate routing paths for flows in cloud storage datacenter networks.The results from experiments carried out on a real traffic trace show that the proposed GRSA method can better balance traffic loads,conserve table space and reduce the average transmission delay for high-priority flows compared to ECMP and Hedera.展开更多
Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated sto...Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.展开更多
Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Fir...Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.展开更多
Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to t...Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.展开更多
The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to ...The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to improve real-time performance, and to allow the system to adapt to changes in the environment, the workload, or to changes in the system architecture due to failures. In this paper, we pursue this goal by formulating and simulating new real-time scheduling models that enable us to easily analyse feedback scheduling with various constraints, overload and disturbance, and by designing a robust, adaptive scheduler that responds gracefully to overload with robust H∞ and feedback error learning control.展开更多
In this paper, the storage capacity of communication among cores and processors is taken into account and a maximum D-value-first algorithm is proposed. By improving the hardware parallelism in the task execution proc...In this paper, the storage capacity of communication among cores and processors is taken into account and a maximum D-value-first algorithm is proposed. By improving the hardware parallelism in the task execution process, the maximum storage requirements for communication are minimized. Experimental results with various directed acyclic graph models showed that compared with the earliest-task-first algorithm, the storage requirements for communication were reduced by 22.46%, on average, while the average of makespan only increased by 0.82%,.展开更多
Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of re...Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of real-time database application in which both the transactions and data can have their timing constraints and priorities of different levels. In order to meet the requirement of real-time data disseminating and retrieving, a broadcast scheduling strategy HPF-ED F (Highest Priority First with Earlier Deadline and Frequency) is proposed under the BoD (Broadcast on Demand) model. Using the strategy, data items are scheduled according to their priority the transaction imposed on them or system set for them. The strategy also considers other characteristics of data items such as deadline and popularity of data. The extensive simulation experiments have been conducted to evaluate the performance of the proposed algorithm. Results show that it can achieve excellent performance compared with existing strategies.展开更多
In the real-time scheduling theory,schedulability and synchronization analyses are used to evaluate scheduling algorithms and real-time locking protocols,respectively,and the empirical synthesis experiment is one of t...In the real-time scheduling theory,schedulability and synchronization analyses are used to evaluate scheduling algorithms and real-time locking protocols,respectively,and the empirical synthesis experiment is one of the major methods to compare the performance of such analyses.However,since many sophisticated techniques have been adopted to improve the analytical accuracy,the implementation of such analyses and experiments is often time-consuming.This paper proposes a schedulability experiment toolkit for multiprocessor real-time systems(SET-MRTS),which provides a framework with infrastructures to implement the schedulability and synchronization analyses and the deployment of empirical synthesis experiments.Besides,with well-designed peripheral components for the input and output,experiments can be conducted easily and flexibly on SET-MRTS.This demonstration further proves the effectiveness of SET-MRTS in both functionality and availability.展开更多
Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we re...Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.展开更多
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric...Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.展开更多
By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability ...By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
Based on improved immune algorithm, the location of material storage in manufacturing workshop is studied. Intelligent optimization algorithms include particle swarm optimization algorithm, genetic selection algorithm...Based on improved immune algorithm, the location of material storage in manufacturing workshop is studied. Intelligent optimization algorithms include particle swarm optimization algorithm, genetic selection algorithm, simulated annealing algorithm, tabu search algorithm and so on. According to the non-linear constraints, the objective function is established to solve the minimum energy consumption of material distribution. The improved immune algorithm can solve the complex problem of manufacturing workshop, and the material storage location and scheduling scheme can be obtained by combining simulation software. Scheduling optimization involves material warehousing, sorting, loading and unloading, handling and so on. Using the one-to-one accurate distribution principle and MATLAB software to simulate and analyze, the location of material warehousing in manufacturing workshop is determined, and the material distribution and scheduling are studied.展开更多
基金supported by the State Grid Jiangsu Electric Power Co.,Ltd.Technology Project(J2023035).
文摘To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005408)
文摘To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.
基金supported by the National Key R&D Program of China (2018YFA0702200)the Fundamental Research Funds of Shandong University。
文摘Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.
基金This project is supported by National 973 Project of China (No.2002-CB312202) National Natural Science Foundation of China (No.60374005, No.60104004) Chinese Postdoctoral Fellowship Foundation.
文摘Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.
基金supported by National Natural Science Foundation of China(Nos.61861013,61662018)Science and Technology Major Project of Guangxi(No.AA18118031)+2 种基金Guangxi Natural Science Foundation of China(No.2018 GXNSFAA050028)the Doctoral Research Foundation of Guilin University of Electronic Science and Technology(No.UF19033Y)Director Fund project of Key Laboratory of Cognitive Radio and Information Processing of Ministry of Education(No.CRKL190102)。
文摘The proliferation of the global datasphere has forced cloud storage systems to evolve more complex architectures for different applications.The emergence of these application session requests and system daemon services has created large persistent flows with diverse performance requirements that need to coexist with other types of traffic.Current routing methods such as equal-cost multipath(ECMP)and Hedera do not take into consideration specific traffic characteristics nor performance requirements,which make these methods difficult to meet the quality of service(QoS)for high-priority flows.In this paper,we tailored the best routing for different kinds of cloud storage flows as an integer programming problem and utilized grey relational analysis(GRA)to solve this optimization problem.The resulting method is a GRAbased service-aware flow scheduling(GRSA)framework that considers requested flow types and network status to select appropriate routing paths for flows in cloud storage datacenter networks.The results from experiments carried out on a real traffic trace show that the proposed GRSA method can better balance traffic loads,conserve table space and reduce the average transmission delay for high-priority flows compared to ECMP and Hedera.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2018D03the National Natural Science Foundation of China under Grant Nos.51608016 and 51421005。
文摘Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.
文摘Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.
基金Project (60505018) supported by the National Natural Science Foundation of China
文摘Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.
文摘The existing scheduling algorithms cannot adequately support modern embedded real-time applications. An important challenge for future research is how to model and introduce control mechanisms to real-time systems to improve real-time performance, and to allow the system to adapt to changes in the environment, the workload, or to changes in the system architecture due to failures. In this paper, we pursue this goal by formulating and simulating new real-time scheduling models that enable us to easily analyse feedback scheduling with various constraints, overload and disturbance, and by designing a robust, adaptive scheduler that responds gracefully to overload with robust H∞ and feedback error learning control.
基金Supported by the National Natural Science Foundation of China(No.61179045 and No.61350009)
文摘In this paper, the storage capacity of communication among cores and processors is taken into account and a maximum D-value-first algorithm is proposed. By improving the hardware parallelism in the task execution process, the maximum storage requirements for communication are minimized. Experimental results with various directed acyclic graph models showed that compared with the earliest-task-first algorithm, the storage requirements for communication were reduced by 22.46%, on average, while the average of makespan only increased by 0.82%,.
基金the National Natural Science Foundation of China(60073045)
文摘Data broadcast is an important data dissemination approach in mobile environment. On broadcast channel, scalability and efficiency of data transmission are satisfied. In a mobile environment, there exists a kind of real-time database application in which both the transactions and data can have their timing constraints and priorities of different levels. In order to meet the requirement of real-time data disseminating and retrieving, a broadcast scheduling strategy HPF-ED F (Highest Priority First with Earlier Deadline and Frequency) is proposed under the BoD (Broadcast on Demand) model. Using the strategy, data items are scheduled according to their priority the transaction imposed on them or system set for them. The strategy also considers other characteristics of data items such as deadline and popularity of data. The extensive simulation experiments have been conducted to evaluate the performance of the proposed algorithm. Results show that it can achieve excellent performance compared with existing strategies.
基金supported by the National Natural Science Foundation of China under Grant No.61802052the Fundamental Research Funds for the Central Universities under Grant No.A030202063008085the China Postdoctoral Science Foundation Funded Project under Grant No.2017M612947。
文摘In the real-time scheduling theory,schedulability and synchronization analyses are used to evaluate scheduling algorithms and real-time locking protocols,respectively,and the empirical synthesis experiment is one of the major methods to compare the performance of such analyses.However,since many sophisticated techniques have been adopted to improve the analytical accuracy,the implementation of such analyses and experiments is often time-consuming.This paper proposes a schedulability experiment toolkit for multiprocessor real-time systems(SET-MRTS),which provides a framework with infrastructures to implement the schedulability and synchronization analyses and the deployment of empirical synthesis experiments.Besides,with well-designed peripheral components for the input and output,experiments can be conducted easily and flexibly on SET-MRTS.This demonstration further proves the effectiveness of SET-MRTS in both functionality and availability.
文摘Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(W22KJ2722005)“Research on Optimal Configuration and Operation Strategy of Energy Storage under“New Energy+Energy Storage”Mode”.
文摘Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.
基金The National Natural Science Foundationof China(No.60873030 )the National High-Tech Research and Development Plan of China(863 Program)(No.2007AA01Z309)
文摘By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
文摘Based on improved immune algorithm, the location of material storage in manufacturing workshop is studied. Intelligent optimization algorithms include particle swarm optimization algorithm, genetic selection algorithm, simulated annealing algorithm, tabu search algorithm and so on. According to the non-linear constraints, the objective function is established to solve the minimum energy consumption of material distribution. The improved immune algorithm can solve the complex problem of manufacturing workshop, and the material storage location and scheduling scheme can be obtained by combining simulation software. Scheduling optimization involves material warehousing, sorting, loading and unloading, handling and so on. Using the one-to-one accurate distribution principle and MATLAB software to simulate and analyze, the location of material warehousing in manufacturing workshop is determined, and the material distribution and scheduling are studied.