Affected by the Super Typhoon“Mangkhut,”a total of five base towers of a transmission line in the mountainous area of China collapsed.In this paper,a mathematical model is established based on the Shuttle Radar Topo...Affected by the Super Typhoon“Mangkhut,”a total of five base towers of a transmission line in the mountainous area of China collapsed.In this paper,a mathematical model is established based on the Shuttle Radar Topography Mission(SRTM)data near the accident tower.The measured wind speed in the plain area under the mountain is used as the calculation boundary condition.The wind speed at the top of the mountain is calculated by using a numerical simulation method.The design wind speed and calculated wind speed at the tower site are compared,and the influence of wind speed on tower position in this wind disaster accident is analyzed.展开更多
Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of t...Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of the line topology switched Ethernet as a data acquisition network.Network calculus theory,which has been successfully applied to assess the real-time performance of packet-switched networks,is used to analyze the networks.To properly describe the activity of switches,a novel approach of modeling data flows into or out of switches is addressed.Based on our model,a concisely analytical expression of the maximal end-to-end delay in line topology switched Ethernet is derived.Finally,the relative simulation results are demonstrated.These results agree well with the analytical results,and thus they validate the data flow modeling techniques.展开更多
Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural respo...Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.展开更多
This paper aims to investigate the critical stability of a multi-degree-of-freedom(multi-DOF)real-time hybrid simulation(RTHS).First,the critical time-delay analysis models are developed using the continuous-and discr...This paper aims to investigate the critical stability of a multi-degree-of-freedom(multi-DOF)real-time hybrid simulation(RTHS).First,the critical time-delay analysis models are developed using the continuous-and discrete-time root locus(RL)techniques,respectively.A bilinear transform is introduced into the first-order Padéapproximation while conducting the discrete RL analysis.Based on this technique,the time delay can be explicitly used as the gain factor and thus the instability mechanism of the multi-DOF RTHS system can be analyzed.Subsequently,the critical time delays calculated by the continuous-and discrete-time RL techniques,respectively,are compared for a 2-DOF RTHS system.It is shown that assuming the RTHS system to be a continuous-time system will result in overestimating the critical time delay.Finally,theoretically calculated critical delays are demonstrated and validated by numerical simulation and a set of RTHS experiments.Parametric analysis provides a glimpse of the effects of time step,frequency and damping ratio in a performing partitioning scheme.The constructed analysis model proves to be useful for evaluating the critical time delay to predict stability and performance,therefore facilitating successful RTHS.展开更多
The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenar...The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.展开更多
In this paper, we investigate the influences of network delay on QoE (Quality of Experience) such as the operability of haptic interface device and the fairness between players for soft objects in a networked real-tim...In this paper, we investigate the influences of network delay on QoE (Quality of Experience) such as the operability of haptic interface device and the fairness between players for soft objects in a networked real-time game subjectively and objectively. We handle a networked balloon bursting game in which two players burst balloons (i.e., soft objects) in a 3D virtual space by using haptic interface devices, and the players compete for the number of burst balloons. As a result, we find that the operability depends on the network delay from the local terminal to the other terminal, and the fairness is mainly dependent on the difference in network delay between the players’ terminals. We confirm that there exists a trade-off relationship between the operability and the fairness. We also see that the contribution of the fairness is larger than that of the operability to the comprehensive quality (i.e., the weighted sum of the operability and fairness). Assessment results further show that the output timing of terminals should be adjusted to the terminal which has the latest output timing to maintain the fairness when the difference in network delay between the terminals is large. In this way, the comprehensive quality at each terminal can be maintained as high as possible.展开更多
This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insert...This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation.展开更多
The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity ca...The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time d...Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time dynamic spectrum management(DSM) algorithm in orthogonal frequency division multiplexing(OFDM)-based high-speed narrow-band power line communication(HNPLC) systems is proposed,and the corresponding FPGA circuit is designed and realized.Performance of the proposed DSM is validated with a large amount of network experiments under practical PLC circumstance.As the noise in each narrow subcarrier is approximately Gaussian,the proposed DSM adopts the BER/SER expression formulized via the AWGN channel to provide a handy and universal strategy for power allocation.The real-time requirement is guaranteed by choosing subcarriers in group and employing the same modulation scheme within each transmission.These measures are suitable for any modulation scheme no matter the system criterion is to maximize data rate or minimize power/BER.Algorithm design and hardware implementation of the proposed DSM are given with some flexible and efficient conversions.The DSM circuit is carried out with Xilinx KC705.Simulation and practical experiments validate that the proposed real-time DSM significantly improves system performance.展开更多
The present study aims to conduct 2 types of statistical analysis to reveal the impact of the spread of COVID-19 on train delays by comparing the potential contributing factors before, during and after the outbreak of...The present study aims to conduct 2 types of statistical analysis to reveal the impact of the spread of COVID-19 on train delays by comparing the potential contributing factors before, during and after the outbreak of the virus in the metropolitan train lines in Japan. First of all, the result of the present study clearly revealed the changes in contributing factors for train delays caused by the spread of COVID-19. Specifically, the contributing factors for train delays changed due to the decrease of passengers by the effect of the outbreak of the virus. Additionally, though large terminal stations were considered to be a major contributing factor in causing and increasing train delays in the past, this was not the case after the spread of COVID-19. Therefore, under such conditions, it is more effective to make improvements in small to medium stations and tracks rather than terminal stations. Furthermore, as the decrease in passengers also decreased train delays in commuter lines going to the suburbs due to the spread of COVID-19, the contributing factor for such lines is the excessive number of passengers. Therefore, as for countermeasures for train delays after the effects of COVID-19, it is necessary to disperse passengers in order to avoid passengers concentrating in the same time zones and train lines.展开更多
This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show...This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.展开更多
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real ti...Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.展开更多
A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematica...A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematical model for two-ALB problem was suggested. A modification of the “ranked positional weight” method, namely two-ALB RPW for two-ALB problems was developed. Experiments were carried out to verify the performance of the proposed method and the results show that it is effective in solving two-sided assembly line balancing problems.展开更多
To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The res...To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The results indicate that it is feasible to employ a helical line as a long-pulse PFL, and the influence of its dispersion is negligible. Compared with a conventional coaxial PFL, the helical PFL with the same size can produce a longer pulse.展开更多
Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of...Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.展开更多
Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a h...Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output- pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.展开更多
A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of...A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of LTDs. In the model, each brick in each cavity is capable of operating with jitter in its switch. Additionally, the manner of triggering cables entering into cavities was considered. The performances of the LTD module operating with three typical cavity-triggering sequences were simulated and the simulation results indicate that switching jitter affects slightly the peak and starting time of the output current pulse. However, the enhancement in switching jitter would significantly lengthen the rise time of the output current pulse. Without considering other factors, a jitter lower than 10 ns may be necessary for the switches in the LTD module to provide output current parameters with an acceptable deviation.展开更多
Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is p...Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.展开更多
In this paper we present a concept of new architectural model consisting of multiple loop delay to increase the throughput. The simulated behavior of an optical node has been realized by using an n x m optical switch ...In this paper we present a concept of new architectural model consisting of multiple loop delay to increase the throughput. The simulated behavior of an optical node has been realized by using an n x m optical switch and recirculating optical delay lines. This investigation infers the scaling behaviors of the proposed architec-ture to maintain efficient use of the buffer under Poisson traffic loading. The analysis also reports the traffic handling capacity for the given complexity of the node architectural design.展开更多
基金CRSRI Open Research Program(Project No.CKWV2014202/KY).
文摘Affected by the Super Typhoon“Mangkhut,”a total of five base towers of a transmission line in the mountainous area of China collapsed.In this paper,a mathematical model is established based on the Shuttle Radar Topography Mission(SRTM)data near the accident tower.The measured wind speed in the plain area under the mountain is used as the calculation boundary condition.The wind speed at the top of the mountain is calculated by using a numerical simulation method.The design wind speed and calculated wind speed at the tower site are compared,and the influence of wind speed on tower position in this wind disaster accident is analyzed.
文摘Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of the line topology switched Ethernet as a data acquisition network.Network calculus theory,which has been successfully applied to assess the real-time performance of packet-switched networks,is used to analyze the networks.To properly describe the activity of switches,a novel approach of modeling data flows into or out of switches is addressed.Based on our model,a concisely analytical expression of the maximal end-to-end delay in line topology switched Ethernet is derived.Finally,the relative simulation results are demonstrated.These results agree well with the analytical results,and thus they validate the data flow modeling techniques.
基金National Science Foundation of China under grant No.51378107Fundamental Research Funds for the Central Universities and Doctoral Research Fund by Southeast University under Grant No.YBJJ-1442
文摘Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.
基金National Natural Science Foundation of China under Grant Nos.51725901 and 51639006。
文摘This paper aims to investigate the critical stability of a multi-degree-of-freedom(multi-DOF)real-time hybrid simulation(RTHS).First,the critical time-delay analysis models are developed using the continuous-and discrete-time root locus(RL)techniques,respectively.A bilinear transform is introduced into the first-order Padéapproximation while conducting the discrete RL analysis.Based on this technique,the time delay can be explicitly used as the gain factor and thus the instability mechanism of the multi-DOF RTHS system can be analyzed.Subsequently,the critical time delays calculated by the continuous-and discrete-time RL techniques,respectively,are compared for a 2-DOF RTHS system.It is shown that assuming the RTHS system to be a continuous-time system will result in overestimating the critical time delay.Finally,theoretically calculated critical delays are demonstrated and validated by numerical simulation and a set of RTHS experiments.Parametric analysis provides a glimpse of the effects of time step,frequency and damping ratio in a performing partitioning scheme.The constructed analysis model proves to be useful for evaluating the critical time delay to predict stability and performance,therefore facilitating successful RTHS.
基金National Natural Science Foundation of China under Grant No.51378107the Fundamental Research Funds for the Central Universities and Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.KYLX-0158the National Natural Science Foundation under Grant No.CMMI-1227962
文摘The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.
文摘In this paper, we investigate the influences of network delay on QoE (Quality of Experience) such as the operability of haptic interface device and the fairness between players for soft objects in a networked real-time game subjectively and objectively. We handle a networked balloon bursting game in which two players burst balloons (i.e., soft objects) in a 3D virtual space by using haptic interface devices, and the players compete for the number of burst balloons. As a result, we find that the operability depends on the network delay from the local terminal to the other terminal, and the fairness is mainly dependent on the difference in network delay between the players’ terminals. We confirm that there exists a trade-off relationship between the operability and the fairness. We also see that the contribution of the fairness is larger than that of the operability to the comprehensive quality (i.e., the weighted sum of the operability and fairness). Assessment results further show that the output timing of terminals should be adjusted to the terminal which has the latest output timing to maintain the fairness when the difference in network delay between the terminals is large. In this way, the comprehensive quality at each terminal can be maintained as high as possible.
基金Project supported by the National Basic Research Program of China (Grant Nos.2006CB302803 and 2011CB301701)the National Natural Science Foundation of China (Grant No.60877036)+1 种基金State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No.2008SH02)the Knowledge Innovation Program of Institute of Semiconductors,Chinese Academy of Sciences (Grant No.ISCAS2008T10)
文摘This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation.
文摘The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
基金Supported by the Tsinghua University International Science and Technology Cooperation Project(No.20133000197,20123000148)
文摘Time-varying frequency selective attenuation and colored noises are unfavorable characteristics of power line communication(PLC) channels of the low voltage networks.To overcome these disadvantages,a novel real-time dynamic spectrum management(DSM) algorithm in orthogonal frequency division multiplexing(OFDM)-based high-speed narrow-band power line communication(HNPLC) systems is proposed,and the corresponding FPGA circuit is designed and realized.Performance of the proposed DSM is validated with a large amount of network experiments under practical PLC circumstance.As the noise in each narrow subcarrier is approximately Gaussian,the proposed DSM adopts the BER/SER expression formulized via the AWGN channel to provide a handy and universal strategy for power allocation.The real-time requirement is guaranteed by choosing subcarriers in group and employing the same modulation scheme within each transmission.These measures are suitable for any modulation scheme no matter the system criterion is to maximize data rate or minimize power/BER.Algorithm design and hardware implementation of the proposed DSM are given with some flexible and efficient conversions.The DSM circuit is carried out with Xilinx KC705.Simulation and practical experiments validate that the proposed real-time DSM significantly improves system performance.
文摘The present study aims to conduct 2 types of statistical analysis to reveal the impact of the spread of COVID-19 on train delays by comparing the potential contributing factors before, during and after the outbreak of the virus in the metropolitan train lines in Japan. First of all, the result of the present study clearly revealed the changes in contributing factors for train delays caused by the spread of COVID-19. Specifically, the contributing factors for train delays changed due to the decrease of passengers by the effect of the outbreak of the virus. Additionally, though large terminal stations were considered to be a major contributing factor in causing and increasing train delays in the past, this was not the case after the spread of COVID-19. Therefore, under such conditions, it is more effective to make improvements in small to medium stations and tracks rather than terminal stations. Furthermore, as the decrease in passengers also decreased train delays in commuter lines going to the suburbs due to the spread of COVID-19, the contributing factor for such lines is the excessive number of passengers. Therefore, as for countermeasures for train delays after the effects of COVID-19, it is necessary to disperse passengers in order to avoid passengers concentrating in the same time zones and train lines.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60577019 and 60777041)the International Cooperation Project of Shanxi Province,China (Grant No. 2007081019)
文摘This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.
基金supported by the National Key Technology Research and Development Program of China(863 Program, Grant No.2009BAG18B03)
文摘Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.
基金Key Projectof Scientific and TechnologicalCommittee of Shanghai(No.0 3 11110 0 5 )
文摘A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematical model for two-ALB problem was suggested. A modification of the “ranked positional weight” method, namely two-ALB RPW for two-ALB problems was developed. Experiments were carried out to verify the performance of the proposed method and the results show that it is effective in solving two-sided assembly line balancing problems.
基金supported by the National 863 Project of China (Grant No. 2005AA835051)
文摘To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The results indicate that it is feasible to employ a helical line as a long-pulse PFL, and the influence of its dispersion is negligible. Compared with a conventional coaxial PFL, the helical PFL with the same size can produce a longer pulse.
基金supported by the National Nature Science Foundation of China (60472101)President Award of ChineseAcademy of Sciences(O729031511).
文摘Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.
基金supported by National Natural Science Foundation of China (Nos. 50637010, 51077111)the State Key Laboratory of Electrical Insulation and Power Equipment of Xi'an Jiaotong University of China (EIPE 09207)
文摘Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output- pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.
基金supported partly by National Natural Science Foundation of China(Nos.50637010,51077111)partly by the State Key Laboratory of Electrical Insulation and Power Equipment of Xi'an Jiaotong University of China(EIPE09207)
文摘A whole circuit model of a linear transformer drivers (LTD) module composed of 60 cavities in series was developed in the software PSPICE to study the influence of switching jitter on the operational performances of LTDs. In the model, each brick in each cavity is capable of operating with jitter in its switch. Additionally, the manner of triggering cables entering into cavities was considered. The performances of the LTD module operating with three typical cavity-triggering sequences were simulated and the simulation results indicate that switching jitter affects slightly the peak and starting time of the output current pulse. However, the enhancement in switching jitter would significantly lengthen the rise time of the output current pulse. Without considering other factors, a jitter lower than 10 ns may be necessary for the switches in the LTD module to provide output current parameters with an acceptable deviation.
基金supported by the President Award of Chinese Academy of Sciences (O729031511)
文摘Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.
文摘In this paper we present a concept of new architectural model consisting of multiple loop delay to increase the throughput. The simulated behavior of an optical node has been realized by using an n x m optical switch and recirculating optical delay lines. This investigation infers the scaling behaviors of the proposed architec-ture to maintain efficient use of the buffer under Poisson traffic loading. The analysis also reports the traffic handling capacity for the given complexity of the node architectural design.