期刊文献+
共找到9,929篇文章
< 1 2 250 >
每页显示 20 50 100
Real-Time Intelligent Diagnosis of Co-frequency Vibration Faults in Rotating Machinery Based on Lightweight-Convolutional Neural Networks
1
作者 Xin Pan Xiancheng Zhang +1 位作者 Zhinong Jiang Guangfu Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期264-282,共19页
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the... The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance. 展开更多
关键词 Co-frequency vibration real-time diagnosis LW-CNN Data augmentation
下载PDF
Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis
2
作者 Xinwei Wang Ming Li +2 位作者 Hankun Bing Dongxing Zhang Yuanshu Zhang 《Energy Engineering》 EI 2024年第12期3875-3898,共24页
After long-term operation,the performance of components in the GTCC system deteriorates and requires timely maintenance.Due to the inability to directly measure the degree of component malfunction,it is necessary to u... After long-term operation,the performance of components in the GTCC system deteriorates and requires timely maintenance.Due to the inability to directly measure the degree of component malfunction,it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’health condition(degree of malfunction)through operation data of the GTCC system.The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system,and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in theGTCC system.Ebsilon software is used to simulate the critical parameters of the malfunctions of the GTCC system components and to obtain the changes in the dissipative temperature of different components.Meanwhile,the fuel consumption and economic changes of the GTCC system on a characteristic power supply day under health and malfunction conditions are analyzed.Finally,the effects of maintenance costs,electricity,and gas prices on maintenance expenses and profits are analyzed.The results show that the GTCC system maintenance profit is 6.07$/MWh,while the GTCC system maintenance expense is 5.83$/MWh.Compared with the planned maintenancemode,the malfunction maintenance mode saves 0.24$/MWh.Simultaneously,the maintenance coefficient of GTCC should be adjusted under different malfunctions to obtain a more accurate maintenance period. 展开更多
关键词 Gas turbine combined cycle malfunction diagnosis exergy analysis maintenance profits
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
3
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security Network Security Cyber Resilience real-time Threat analysis Cyber Threats Cyberattacks Threat Intelligence Machine Learning Artificial Intelligence Threat Detection Threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure Data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat Modeling Security Architecture
下载PDF
Value of Texture Analysis of Intravoxel Incoherent Motion Parameters in Differential Diagnosis of Pancreatic Neuroendocrine Tumor and Pancreatic Adenocarcinoma 被引量:8
4
作者 王英伟 张兴华 +5 位作者 王波涛 王叶 刘梦琦 王海屹 叶慧义 陈志晔 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第1期1-9,共9页
Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eigh... Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eighteen patients with pNET and 32 patients with PAC were retrospectively enrolled in this study. All patients underwent diffusion-weighted imaging with 10 b values used(from 0 to 800 s/mm2). Based on IVIM model, perfusion-related parameters including perfusion fraction(f), fast component of diffusion(Dfast) and true diffusion parameter slow component of diffusion(Dslow) were calculated on a voxel-by-voxel basis and reorganized into gray-encoded parametric maps. The mean value of each IVIM parameter and texture features [Angular Second Moment(ASM), Inverse Difference Moment(IDM), Correlation, Contrast and Entropy] values of IVIM parameters were measured. Independent sample t-test or Mann-Whitney U test were performed for the betweengroup comparison of quantitative data. Regression model was established by using binary logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to evaluate the diagnostic efficiency.Results The mean f value of the pNET group were significantly higher than that of the PAC group(27.0% vs. 19.0%, P = 0.001), while the mean values of Dfast and Dslow showed no significant differences between the two groups. All texture features(ASM, IDM, Correlation, Contrast and Entropy) of each IVIM parameter showed significant differences between the pNET and PAC groups(P = 0.000-0.043). Binary logistic regression analysis showed that texture ASM of Dfast and texture Correlation of Dslow were considered as the specific imaging variables for the differential diagnosis of pNET and PAC. ROC analysis revealed that multiple texture features presented better diagnostic performance than IVIM parameters(AUC 0.849-0.899 vs. 0.526-0.776), and texture ASM of Dfast combined with Correlation of Dslow in the model of logistic regression had largest area under ROC curve for distinguishing pNET from PAC(AUC 0.934, cutoff 0.378, sensitivity 0.889, specificity 0.854). Conclusion Texture analysis of IVIM parameters could be an effective and noninvasive tool to differentiate pNET from PAC. 展开更多
关键词 NEUROENDOCRINE TUMOR PANCREATIC ADENOCARCINOMA texture analysis intravoxel INCOHERENT motion differential diagnosis
下载PDF
Insulation fault diagnosis based on group grey relational grade analysis method for power transformers 被引量:5
5
作者 董立新 肖登明 刘奕路 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期175-179,共5页
Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type... Utilising dissolved gases analysis, a new insulation fault diagnosis methodfor power transformers is proposed. This method is based on the group grey relational grade analysismethod. First, according to the fault type and grey reference sequence structure, some typicalfault samples are divided into several sets of grey reference sequences. These sets are structuredas one grey reference sequence group. Secondly, according to a new calculation method of the greyrelational coefficient, the individual relational coefficient and grade are computed. Then accordingto the given calculation method for the group grey relation grade, the group grey relational gradeis computed and the group grey relational grade matrix is structured. Finally, according to therelational sequence, the insulation fault is identified for power transformers. The results of alarge quantity of instant analyses show that the proposed method has higher diagnosis accuracy andreliability than the three-ratio method and the traditional grey relational method. It has goodclassified diagnosis ability and reliability. 展开更多
关键词 dissolved gases analysis group grey relational grade fault diagnosis
下载PDF
Value of Magnetic Resonance Imaging Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors 被引量:15
6
作者 王波涛 樊文萍 +6 位作者 许欢 李丽慧 张晓欢 王昆 刘梦琦 游俊浩 陈志晔 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第1期33-37,共5页
Objective To investigate the difference in texture features on diffusion weighted imaging(DWI) images between breast benign and malignant tumors.Methods Patients including 56 with mass-like breast cancer, 16 with brea... Objective To investigate the difference in texture features on diffusion weighted imaging(DWI) images between breast benign and malignant tumors.Methods Patients including 56 with mass-like breast cancer, 16 with breast fibroadenoma, and 4 with intraductal papilloma of breast treated in the Hainan Hospital of Chinese PLA General Hospital were retrospectively enrolled in this study, and allocated to the benign group(20 patients) and the malignant group(56 patients) according to the post-surgically pathological results. Texture analysis was performed on axial DWI images, and five characteristic parameters including Angular Second Moment(ASM), Contrast, Correlation, Inverse Difference Moment(IDM), and Entropy were calculated. Independent sample t-test and Mann-Whitney U test were performed for intergroup comparison. Regression model was established by using Binary Logistic regression analysis, and receiver operating characteristic curve(ROC) analysis was carried out to evaluate the diagnostic efficiency. Results The texture features ASM, Contrast, Correlation and Entropy showed significant differences between the benign and malignant breast tumor groups(PASM= 0.014, Pcontrast= 0.019, Pcorrelation= 0.010, Pentropy= 0.007). The area under the ROC curve was 0.685, 0.681, 0.754, and 0.683 respectively for the positive texture variables mentioned above, and that for the combined variables(ASM, Contrast, and Entropy) was 0.802 in the model of Logistic regression. Binary Logistic regression analysis demonstrated that ASM, Contrast and Entropy were considered as thespecific imaging variables for the differential diagnosis of breast benign and malignant tumors.Conclusion The texture analysis of DWI may be a simple and effective tool in the differential diagnosis between breast benign and malignant tumors. 展开更多
关键词 BREAST TUMOR TEXTURE analysis magnetic RESONANCE imaging differential diagnosis
下载PDF
Fault Diagnosis in Chemical Process Based on Self-organizing Map Integrated with Fisher Discriminant Analysis 被引量:16
7
作者 陈心怡 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期382-387,共6页
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord... Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process. 展开更多
关键词 self-organizing maps Fisher discriminant analysis fault diagnosis MONITORING Tennessee Eastman process
下载PDF
Performance Monitoring and Diagnosis of Multivariable Model Predictive Control Using Statistical Analysis 被引量:11
8
作者 张强 李少远 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第2期207-215,共9页
A statistic-based benchmark was proposed for performance assessment and monitoring of model predic- tive control; the benchmark was straightforward and achievable by recording a set of output data only when the contro... A statistic-based benchmark was proposed for performance assessment and monitoring of model predic- tive control; the benchmark was straightforward and achievable by recording a set of output data only when the control performance was good according to the user’s selection. Principal component model was built and an auto- regressive moving average filter was identified to monitor the performance; an improved T2 statistic was selected as the performance monitor index. When performance changes were detected, diagnosis was done by model validation using recursive analysis and generalized likelihood ratio (GLR) method. This distinguished the fact that the per- formance change was due to plant model mismatch or due to disturbance term. Simulation was done about a heavy oil fractionator system and good results were obtained. The diagnosis result was helpful for the operator to improve the system performance. 展开更多
关键词 predictive control performance monitoring diagnosis principal component analysis
下载PDF
SIMULATION OF CRACK DIAGNOSIS OF ROTOR BASED ON MULTI-SCALE SINGUUR-SPECTRUM ANALYSIS 被引量:4
9
作者 LI Ruqiang LIU Yuanfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期282-285,共4页
In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not th... In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not the same. For this limitation of wavelet analysis, a novel diagnostic approach of rotor crack based on multi-scale singular-spectrum analysis (MS-SSA) is proposed. Firstly, a Jeffcott model of a cracked rotor is developed and the forth-order Runge-Kutta method is used to solve the motion equations of this rotor to obtain its time response (signals). Secondly, a comparatively simple approach of MS-SSA is presented and the empirical orthogonal functions of different orders in various scales are regarded as analyzing functions. At last, the signals of the cracked rotor and an uncracked rotor are analyzed using the proposed approach of MS-SSA, and the simulative results are compared. The results show that, the data-adaptive analyzing functions can capture many features of signals and the rotor crack can be identified and diagnosed effectively by comparing the analytic results of signals of the cracked rotor with those of the uncracked rotor using the analyzing functions of different orders. 展开更多
关键词 ROTOR CRACK Fault diagnosis Multi-scale singular-spectrum analysis(MS-SSA)
下载PDF
Signed Directed Graph and Qualitative Trend Analysis Based Fault Diagnosis in Chemical Industry 被引量:16
10
作者 高东 吴重光 +1 位作者 张贝克 马昕 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期265-276,共12页
In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,ha... In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency. 展开更多
关键词 signed directed graph qualitative trend analysis fault diagnosis bidirectional inference atmospheric distillation tower unit
下载PDF
Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis 被引量:8
11
作者 蒋丽英 谢磊 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期343-348,共6页
Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In or... Since there are not enough fault data in historical data sets, it is very difficult to diagnose faults for batch processes. In addition, a complete batch trajectory can be obtained till the end of its operation. In order to overcome the need for estimated or filled up future unmeasured values in the online fault diagnosis, sufficiently utilize the finite information of faults, and enhance the diagnostic performance, an improved multi-model Fisher discriminant analysis is represented. The trait of the proposed method is that the training data sets are made of the current measured information and the past major discriminant information, and not only the current information or the whole batch data. An industrial typical multi-stage streptomycin fermentation process is used to test the performance of fault diagnosis of the proposed method. 展开更多
关键词 fault diagnosis Fisher discriminant analysis batch processes
下载PDF
Independent component analysis approach for fault diagnosis of condenser system in thermal power plant 被引量:6
12
作者 Ajami Ali Daneshvar Mahdi 《Journal of Central South University》 SCIE EI CAS 2014年第1期242-251,共10页
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t... A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants. 展开更多
关键词 CONDENSER fault detection and diagnosis independent component analysis independent component analysis (ICA) principal component analysis (PCA) thermal power plant
下载PDF
Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements 被引量:4
13
作者 Jinsong Li Hao Liu +2 位作者 Wenzhuo Li Tianshu Bi Mingyang Zhao 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期131-142,共12页
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ... The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests. 展开更多
关键词 Power system Data network Wide-frequency information real-time system Traffic analysis Optimization strategy
下载PDF
HYBRID WAVELET PACKET-TEAGER ENERGY OPERATOR ANALYSIS AND ITS APPLICATION FOR GEARBOX FAULT DIAGNOSIS 被引量:6
14
作者 LIU Xiaofeng QIN Shuren BO Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期79-83,共5页
Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and T... Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults. 展开更多
关键词 Wavelet packet Teager energy operator Fault diagnosis Demodulation analysis
下载PDF
Computer-aided texture analysis combined with experts' knowledge: Improving endoscopic celiac disease diagnosis 被引量:1
15
作者 Michael Gadermayr Hubert Kogler +3 位作者 Maximilian Karla Dorit Merhof Andreas Uhl Andreas Vécsei 《World Journal of Gastroenterology》 SCIE CAS 2016年第31期7124-7134,共11页
AIM: To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease(CD).METHODS: We assessed a hybrid approach based on the integration of expert knowledge into the computerbased cl... AIM: To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease(CD).METHODS: We assessed a hybrid approach based on the integration of expert knowledge into the computerbased classification pipeline. A total of 2835 endoscopic images from the duodenum were recorded in 290 children using the modified immersion technique(MIT). These children underwent routine upper endoscopy for suspected CD or non-celiac upper abdominal symptoms between August 2008 and December 2014. Blinded to the clinical data and biopsy results, three medical experts visually classified each image as normal mucosa(Marsh-0) or villous atrophy(Marsh-3). The experts' decisions were further integrated into state-of-the-arttexture recognition systems. Using the biopsy results as the reference standard, the classification accuracies of this hybrid approach were compared to the experts' diagnoses in 27 different settings.RESULTS: Compared to the experts' diagnoses, in 24 of 27 classification settings(consisting of three imaging modalities, three endoscopists and three classification approaches), the best overall classification accuracies were obtained with the new hybrid approach. In 17 of 24 classification settings, the improvements achieved with the hybrid approach were statistically significant(P < 0.05). Using the hybrid approach classification accuracies between 94% and 100% were obtained. Whereas the improvements are only moderate in the case of the most experienced expert, the results of the less experienced expert could be improved significantly in 17 out of 18 classification settings. Furthermore, the lowest classification accuracy, based on the combination of one database and one specific expert, could be improved from 80% to 95%(P < 0.001).CONCLUSION: The overall classification performance of medical experts, especially less experienced experts, can be boosted significantly by integrating expert knowledge into computer-aided diagnosis systems. 展开更多
关键词 CELIAC disease diagnosis ENDOSCOPY COMPUTER-AIDED texture analysis BIOPSY Pattern recognition
下载PDF
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks 被引量:3
16
作者 李志雄 严新平 +2 位作者 袁成清 赵江滨 彭中笑 《Journal of Marine Science and Application》 2011年第1期17-24,共8页
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com... A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance. 展开更多
关键词 marine propulsion system fault diagnosis vibration analysis BISPECTRUM artificial neural networks Article
下载PDF
Performance analysis model for real-time Ethernet-based computer numerical control system 被引量:2
17
作者 万加富 李迪 +1 位作者 涂钰青 张春华 《Journal of Central South University》 SCIE EI CAS 2011年第5期1545-1553,共9页
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met... In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development. 展开更多
关键词 computer numerical control (CNC) system real-time Ethemet time characteristic parameters performance analysis model manufacturing accuracy
下载PDF
Fault Diagnosis for Batch Processes by Improved Multi-model Fisher Discriminant Analysis 被引量:1
18
作者 蒋丽英 谢磊 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3X期343-348,共6页
关键词 FAULT diagnosis FISHER DISCRIMINANT analysis BATCH processes
下载PDF
Real-Time Multimodal Biometric Authentication of Human Using Face Feature Analysis 被引量:1
19
作者 Rohit Srivastava Ravi Tomar +3 位作者 Ashutosh Sharma Gaurav Dhiman Naveen Chilamkurti Byung-Gyu Kim 《Computers, Materials & Continua》 SCIE EI 2021年第10期1-19,共19页
As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their characte... As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images. 展开更多
关键词 BIOMETRICS real-time multimodal biometrics real-time face recognition feature analysis
下载PDF
Diagnosis and Analysis on the Heavy Rainstorm Weather Induced by " Higos" Weakened Circulation 被引量:1
20
作者 林两位 黄建忠 +1 位作者 王莉萍 洪晓湘 《Meteorological and Environmental Research》 CAS 2010年第10期1-4,7,共5页
The large-range heavy precipitation occurred in the central-southern coast of Fujian on October 6,2008.By using the conventional meteorological data and NCEP 1°×1° 6 h one time analysis data,we analyzed... The large-range heavy precipitation occurred in the central-southern coast of Fujian on October 6,2008.By using the conventional meteorological data and NCEP 1°×1° 6 h one time analysis data,we analyzed,diagnosed and discussed the reasons of this heavy rainstorm occurrence and maintenance.The results showed that this heavy rainstorm weather process was mainly formed by the low-pressure system which was remained after ' Higos' weakened.The low-pressure system was excited by the weak cold air in the low layer which was brought by 500 hPa westerly trough.The common effect of southwest jet stream in the low altitude in the southeast of low pressure and the northerly airflow in the northwest made that the low-pressure circulation strengthened and maintained.The calculation gained the physical quantity field configuration which was favorable for the appearance of heavy precipitation.The analysis on the relative helicity of windstorm showed that the distribution and the time evolution of helicity had the good corresponding relationship with the distribution and the time evolution of heavy precipitation.The intensity variation of helicity had the certain instruction significance on the rainstorm evolution. 展开更多
关键词 Heavy rainstorm Physical quantity field diagnosis and analysis HELICITY China
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部