A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can ...The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also展开更多
To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as ...To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.展开更多
This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these ...This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.展开更多
Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engine...Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engineering demonstration of a distributed power flow controller,it is urgent to establish a digital/analog simulation platform that supports closed-loop real-time simulation of a distributed power flow controller.In this paper,the electromagnetic transient model of a distributed power flow controller is established on ADPSS(advanced digital power system simulator).The rapid control prototype realized by dSPACE is connected to ADPSS to form a digital/analog simulation platform for a distributed power flow controller.Through a voltage control and power flow control simulation of the test system with a distributed power flow controller,the correctness and effectiveness of the constructed simulation platform are verified,which provides a new way for the verification of the new theory of a distributed power flow controller.展开更多
Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in orde...Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in order to reduce cost in the testing phase. Nowadays, real time PV simulators are obtained by using analog and/or digital components. In this paper, a real-time simulation of a PV system with a boost converter was proposed using only the digital signal processor (DSP) processor with two DC voltage sources to emulate the temperature and irradiation in the PV system. A MATLAB/ Simulink environment was used to develop the real-time PV system with a boost converter into a C-program and build it into a DSP controller TMS320F28335. Besides, the performance of the real-time DSP-based PV was tested in different temperature and irradiation conditions to observe the P-V and V-I characteristics. Further, the performance of the PV with a boost converter was tested at different temperatures and irradiations using MPPT algorithms. This scheme was tested through simulation and the results were validated with that of standard conditions given in the PV data sheets. Implementation of this project helped to attract more researchers to study renewable energy applications without real sources. This might facilitate the study of PV systems in a real-time scenario and the evaluation of what should be expected for PV modules available in the market.展开更多
As an emerging technology,digital twin is expected to bring novel application modes to the whole life cycle process of unmanned ground equipment,including research and development,design,control optimization,operation...As an emerging technology,digital twin is expected to bring novel application modes to the whole life cycle process of unmanned ground equipment,including research and development,design,control optimization,operation and maintenance,etc.The highly dynamic,complex,and uncertain characteristics of unmanned ground equipment and the battlefield environment also pose new challenges for digital twin technology.Starting from the new challenges faced by the digital twin of unmanned ground equipment,this paper designs a service-oriented cloud-edge-end collaborative platform architecture of the digital twin system of unmanned ground equipment,and further analyzes several key technologies supporting the implementation of the platform architecture.展开更多
An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field...An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.展开更多
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
文摘The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also
文摘To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.
文摘This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.
基金the National Natural Science Foundation of China(51177114)the Major Projects of Technical Innovation in Huhei(2018AAA050,2019AAA016).
文摘Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engineering demonstration of a distributed power flow controller,it is urgent to establish a digital/analog simulation platform that supports closed-loop real-time simulation of a distributed power flow controller.In this paper,the electromagnetic transient model of a distributed power flow controller is established on ADPSS(advanced digital power system simulator).The rapid control prototype realized by dSPACE is connected to ADPSS to form a digital/analog simulation platform for a distributed power flow controller.Through a voltage control and power flow control simulation of the test system with a distributed power flow controller,the correctness and effectiveness of the constructed simulation platform are verified,which provides a new way for the verification of the new theory of a distributed power flow controller.
文摘Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in order to reduce cost in the testing phase. Nowadays, real time PV simulators are obtained by using analog and/or digital components. In this paper, a real-time simulation of a PV system with a boost converter was proposed using only the digital signal processor (DSP) processor with two DC voltage sources to emulate the temperature and irradiation in the PV system. A MATLAB/ Simulink environment was used to develop the real-time PV system with a boost converter into a C-program and build it into a DSP controller TMS320F28335. Besides, the performance of the real-time DSP-based PV was tested in different temperature and irradiation conditions to observe the P-V and V-I characteristics. Further, the performance of the PV with a boost converter was tested at different temperatures and irradiations using MPPT algorithms. This scheme was tested through simulation and the results were validated with that of standard conditions given in the PV data sheets. Implementation of this project helped to attract more researchers to study renewable energy applications without real sources. This might facilitate the study of PV systems in a real-time scenario and the evaluation of what should be expected for PV modules available in the market.
文摘As an emerging technology,digital twin is expected to bring novel application modes to the whole life cycle process of unmanned ground equipment,including research and development,design,control optimization,operation and maintenance,etc.The highly dynamic,complex,and uncertain characteristics of unmanned ground equipment and the battlefield environment also pose new challenges for digital twin technology.Starting from the new challenges faced by the digital twin of unmanned ground equipment,this paper designs a service-oriented cloud-edge-end collaborative platform architecture of the digital twin system of unmanned ground equipment,and further analyzes several key technologies supporting the implementation of the platform architecture.
基金Research presented in this paper was funded by the National Key Research and Development Program of China[grant numbers 2016YFB0501503 and 2016YFB0501502]Hainan Provincial Department of Science and Technology[grant number ZDKJ2016021].
文摘An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.