期刊文献+
共找到2,748篇文章
< 1 2 138 >
每页显示 20 50 100
Real-Time Face Detection and Recognition in Complex Background
1
作者 Xin Zhang Thomas Gonnot Jafar Saniie 《Journal of Signal and Information Processing》 2017年第2期99-112,共14页
This paper provides efficient and robust algorithms for real-time face detection and recognition in complex backgrounds. The algorithms are implemented using a series of signal processing methods including Ada Boost, ... This paper provides efficient and robust algorithms for real-time face detection and recognition in complex backgrounds. The algorithms are implemented using a series of signal processing methods including Ada Boost, cascade classifier, Local Binary Pattern (LBP), Haar-like feature, facial image pre-processing and Principal Component Analysis (PCA). The Ada Boost algorithm is implemented in a cascade classifier to train the face and eye detectors with robust detection accuracy. The LBP descriptor is utilized to extract facial features for fast face detection. The eye detection algorithm reduces the false face detection rate. The detected facial image is then processed to correct the orientation and increase the contrast, therefore, maintains high facial recognition accuracy. Finally, the PCA algorithm is used to recognize faces efficiently. Large databases with faces and non-faces images are used to train and validate face detection and facial recognition algorithms. The algorithms achieve an overall true-positive rate of 98.8% for face detection and 99.2% for correct facial recognition. 展开更多
关键词 face detection FACIAL Recognition ADA BOOST Algorithm CASCADE CLASSIFIER Local Binary Pattern Haar-Like Features Principal Component Analysis
下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
2
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 Artificial intelligence deep learning real-time object detection application
下载PDF
Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment
3
作者 Chengjun Wang Fan Ding +4 位作者 Yiwen Wang Renyuan Wu Xingyu Yao Chengjie Jiang Liuyi Ling 《Computers, Materials & Continua》 SCIE EI 2024年第1期1481-1501,共21页
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r... The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot. 展开更多
关键词 YOLACT real-time detection instance segmentation attention mechanism STRAWBERRY
下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
4
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(SLAM)
下载PDF
A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
5
作者 Liang Liu Nan Yang +4 位作者 Saifei Liu Yuanyuan Cao Shuowen Tian Tiancheng Liu Xun Zhao 《Journal of Intelligent Learning Systems and Applications》 2024年第1期1-11,共11页
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m... Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection. 展开更多
关键词 real-time Mask Target CNN (Convolutional Neural Network) Single-Stage detection Multi-Scale Feature Perception
下载PDF
Study on Real-Time Heart Rate Detection Based on Multi-People 被引量:1
6
作者 Qiuyu Hu Wu Zeng +3 位作者 Yi Sheng Jian Xu Weihua Ou Ruochen Tan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1397-1408,共12页
Heart rate is an important vital characteristic which indicates physical and mental health status.Typically heart rate measurement instruments require direct contact with the skin which is time-consuming and costly.Th... Heart rate is an important vital characteristic which indicates physical and mental health status.Typically heart rate measurement instruments require direct contact with the skin which is time-consuming and costly.Therefore,the study of non-contact heart rate measurement methods is of great importance.Based on the principles of photoelectric volumetric tracing,we use a computer device and camera to capture facial images,accurately detect face regions,and to detect multiple facial images using a multi-target tracking algorithm.Then after the regional segmentation of the facial image,the signal acquisition of the region of interest is further resolved.Finally,frequency detection of the collected Photo-plethysmography(PPG)and Electrocardiography(ECG)signals is completed with peak detection,Fourier analysis,and a Waveletfilter.The experimental results show that the subject’s heart rate can be detected quickly and accurately even when monitoring multiple facial targets simultaneously. 展开更多
关键词 face recognition face analysis heart rate detection IPPG signal
下载PDF
LDA-ID:An LDA-Based Framework for Real-Time Network Intrusion Detection 被引量:1
7
作者 Weidong Zhou Shengwei Lei +1 位作者 Chunhe Xia Tianbo Wang 《China Communications》 SCIE CSCD 2023年第12期166-181,共16页
Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time ... Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time detection is an urgent problem.To address the two above problems,we propose a Latent Dirichlet Allocation topic model-based framework for real-time network Intrusion Detection(LDA-ID),consisting of static and online LDA-ID.The problem of feature overlap is transformed into static LDA-ID topic number optimization and topic selection.Thus,the detection is based on the latent topic features.To achieve efficient real-time detection,we design an online computing mode for static LDA-ID,in which a parameter iteration method based on momentum is proposed to balance the contribution of prior knowledge and new information.Furthermore,we design two matching mechanisms to accommodate the static and online LDA-ID,respectively.Experimental results on the public NSL-KDD and UNSW-NB15 datasets show that our framework gets higher accuracy than the others. 展开更多
关键词 feature overlap LDA-ID optimal topic number determination real-time intrusion detection
下载PDF
Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms
8
作者 Arsal Javaid Areeb Abbas +4 位作者 Jehangir Arshad Mohammad Khalid Imam Rahmani Sohaib Tahir Chauhdary Mujtaba Hussain Jaffery Abdulbasid S.Banga 《Computers, Materials & Continua》 SCIE EI 2023年第11期1795-1814,共20页
To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Susta... To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture. 展开更多
关键词 Posture detection FSR sensor machine learning real-time KNN
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
9
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 real-time health data monitoring Cache-Assisted real-time detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
Portable FBAR based E-nose for cold chain real-time bananas shelf time detection
10
作者 Chen Wu Jiuyan Li 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期32-39,共8页
Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and... Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing.Also,an ideal electronic nose(E-nose)in a cold chain should be stable to its surroundings and remain highly accurate and portable.In this work,a portable film bulk acoustic resonator(FBAR)-based E-nose was built for real-time measurement of banana shelf time.The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone,and by introducing an air-tight FBAR as a reference,the E-nose can avoid most of the drift caused by surroundings.With the help of porous layer by layer(LBL)coating of the FBAR,the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate,while the detection range is large enough to cover a relative humidity of 0.8.In this regard,the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state,thereby showing the possibility of real-time shelf time detection.This portable FBAR-based E-nose has a large testing scale,high sensitivity,good humidity tolerance,and low frequency drift to its surroundings,thereby meeting the needs of cold-chain usage. 展开更多
关键词 Film bulk acoustic resonator(FBAR) Portable E-nose real-time detection Layer by layer
下载PDF
Real-time Face Detection using Skin Color Model
11
作者 LUYao-xin LIUZhi-Qiang ZHUXiang-hua 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2004年第3期79-83,共5页
This paper presents a new face detection approach to real-time applications, which is based on the skin color model and the morphological filtering. First the non-skin color pixels of the input image are removed based... This paper presents a new face detection approach to real-time applications, which is based on the skin color model and the morphological filtering. First the non-skin color pixels of the input image are removed based on the skin color model in the YC rC b chrominance space, from which we extract candidate human face regions. Then a mathematical morphological filter is used to remove noisy regions and fill the holes in the candidate skin color regions. We adopt the similarity between the human face features and the candidate face regions to locate the face regions in the original image. We have implemented the algorithm in our smart media system. The experiment results show that this system is effective in real-time applications. 展开更多
关键词 real time face detection the skin color model mathematical morphological filter
原文传递
An Automated Real-Time Face Mask Detection System Using Transfer Learning with Faster-RCNN in the Era of the COVID-19 Pandemic
12
作者 Maha Farouk S.Sabir Irfan Mehmood +4 位作者 Wafaa Adnan Alsaggaf Enas Fawai Khairullah Samar Alhuraiji Ahmed S.Alghamdi Ahmed A.Abd El-Latif 《Computers, Materials & Continua》 SCIE EI 2022年第5期4151-4166,共16页
Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmissio... Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmission of COVID-19.The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places.Therefore,it is very difficult to manually monitor people in overcrowded areas.This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places,by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19.This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked.The proposed framework is built by fine-tuning the state-of-the-art deep learning model,Faster-RCNN,and has been validated on a publicly available dataset named Face Mask Dataset(FMD)and achieving the highest average precision(AP)of 81%and highest average Recall(AR)of 84%.This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces.Moreover,this work applies to real-time and can be implemented in any public service area. 展开更多
关键词 COIVD-19 deep learning faster-RCNN object detection transfer learning face mask
下载PDF
Real-Time Tunable Gas Sensing Platform Based on SnO_(2) Nanoparticles Activated by Blue Micro-Light-Emitting Diodes
13
作者 Gi Baek Nam Jung-El Ryu +25 位作者 Tae Hoon Eom Seung Ju Kim Jun Min Suh Seungmin Lee Sungkyun Choi Cheon Woo Moon Seon Ju Park Soo Min Lee Byungsoo Kim Sung Hyuk Park Jin Wook Yang Sangjin Min Sohyeon Park Sung Hwan Cho Hyuk Jin Kim Sang Eon Jun Tae Hyung Lee Yeong Jae Kim Jae Young Kim Young Joon Hong Jong-In Shim Hyung-Gi Byun Yongjo Park Inkyu Park Sang-Wan Ryu Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期103-119,共17页
Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite thes... Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies. 展开更多
关键词 Micro-LED Gas sensor array Low power consumption Metal decoration real-time detection
下载PDF
NFA:A neural factorization autoencoder based online telephony fraud detection
14
作者 Abdul Wahid Mounira Msahli +1 位作者 Albert Bifet Gerard Memmi 《Digital Communications and Networks》 SCIE CSCD 2024年第1期158-167,共10页
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac... The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks. 展开更多
关键词 Telecom industry Streaming anomaly detection Fraud analysis Factorization machine real-time system Security
下载PDF
Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning 被引量:1
15
作者 Latifah Almuqren Manar Ahmed Hamza +1 位作者 Abdullah Mohamed Amgad Atta Abdelmageed 《Computers, Materials & Continua》 SCIE EI 2023年第6期4917-4933,共17页
Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments... Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments in deep learning(DL)and computer vision(CV)techniques enable the design of automated face recognition and tracking methods.This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking(HHODL-AFDT)method.The proposed HHODL-AFDT model involves a Faster region based convolution neural network(RCNN)-based face detection model and HHO-based hyperparameter opti-mization process.The presented optimal Faster RCNN model precisely rec-ognizes the face and is passed into the face-tracking model using a regression network(REGN).The face tracking using the REGN model uses the fea-tures from neighboring frames and foresees the location of the target face in succeeding frames.The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work.The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60%and 88.08%under PICS and VTB datasets,respectively. 展开更多
关键词 face detection face tracking deep learning computer vision video surveillance parameter tuning
下载PDF
Advanced Face Mask Detection Model Using Hybrid Dilation Convolution Based Method 被引量:1
16
作者 Shaohan Wang Xiangyu Wang Xin Guo 《Journal of Software Engineering and Applications》 2023年第1期1-19,共19页
A face-mask object detection model incorporating hybrid dilation convolutional network termed ResNet Hybrid-dilation-convolution Face-mask-detector (RHF) is proposed in this paper. Furthermore, a lightweight face-mask... A face-mask object detection model incorporating hybrid dilation convolutional network termed ResNet Hybrid-dilation-convolution Face-mask-detector (RHF) is proposed in this paper. Furthermore, a lightweight face-mask dataset named Light Masked Face Dataset (LMFD) and a medium-sized face-mask dataset named Masked Face Dataset (MFD) with data augmentation methods applied is also constructed in this paper. The hybrid dilation convolutional network is able to expand the perception of the convolutional kernel without concern about the discontinuity of image information during the convolution process. For the given two datasets being constructed above, the trained models are significantly optimized in terms of detection performance, training time, and other related metrics. By using the MFD dataset of 55,905 images, the RHF model requires roughly 10 hours less training time compared to ResNet50 with better detection results with mAP of 93.45%. 展开更多
关键词 face Mask detection Object detection Hybrid Dilation Convolution Computer Vision
下载PDF
Spoofing Face Detection Using Novel Edge-Net Autoencoder for Security
17
作者 Amal H.Alharbi S.Karthick +2 位作者 K.Venkatachalam Mohamed Abouhawwash Doaa Sami Khafaga 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2773-2787,共15页
Recent security applications in mobile technologies and computer sys-tems use face recognition for high-end security.Despite numerous security tech-niques,face recognition is considered a high-security control.Develop... Recent security applications in mobile technologies and computer sys-tems use face recognition for high-end security.Despite numerous security tech-niques,face recognition is considered a high-security control.Developers fuse and carry out face identification as an access authority into these applications.Still,face identification authentication is sensitive to attacks with a 2-D photo image or captured video to access the system as an authorized user.In the existing spoofing detection algorithm,there was some loss in the recreation of images.This research proposes an unobtrusive technique to detect face spoofing attacks that apply a single frame of the sequenced set of frames to overcome the above-said problems.This research offers a novel Edge-Net autoencoder to select convoluted and dominant features of the input diffused structure.First,this pro-posed method is tested with the Cross-ethnicity Face Anti-spoofing(CASIA),Fetal alcohol spectrum disorders(FASD)dataset.This database has three models of attacks:distorted photographs in printed form,photographs with removed eyes portion,and video attacks.The images are taken with three different quality cameras:low,average,and high-quality real and spoofed images.An extensive experimental study was performed with CASIA-FASD,3 Diagnostic Machine Aid-Digital(DMAD)dataset that proved higher results when compared to existing algorithms. 展开更多
关键词 Image processing edge detection edge net auto-encoder face authentication digital security
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
18
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security Network Security Cyber Resilience real-time Threat Analysis Cyber Threats Cyberattacks Threat Intelligence Machine Learning Artificial Intelligence Threat detection Threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure Data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat Modeling Security Architecture
下载PDF
Real-time image processing and display in object size detection based on VC++ 被引量:2
19
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
下载PDF
Fast and Accurate Detection of Masked Faces Using CNNs and LBPs
20
作者 Sarah M.Alhammad Doaa Sami Khafaga +3 位作者 Aya Y.Hamed Osama El-Koumy Ehab R.Mohamed Khalid M.Hosny 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2939-2952,共14页
Face mask detection has several applications,including real-time surveillance,biometrics,etc.Identifying face masks is also helpful for crowd control and ensuring people wear them publicly.With monitoring personnel,it... Face mask detection has several applications,including real-time surveillance,biometrics,etc.Identifying face masks is also helpful for crowd control and ensuring people wear them publicly.With monitoring personnel,it is impossible to ensure that people wear face masks;automated systems are a much superior option for face mask detection and monitoring.This paper introduces a simple and efficient approach for masked face detection.The architecture of the proposed approach is very straightforward;it combines deep learning and local binary patterns to extract features and classify themasmasked or unmasked.The proposed systemrequires hardware withminimal power consumption compared to state-of-the-art deep learning algorithms.Our proposed system maintains two steps.At first,this work extracted the local features of an image by using a local binary pattern descriptor,and then we used deep learning to extract global features.The proposed approach has achieved excellent accuracy and high performance.The performance of the proposed method was tested on three benchmark datasets:the realworld masked faces dataset(RMFD),the simulated masked faces dataset(SMFD),and labeled faces in the wild(LFW).Performancemetrics for the proposed technique weremeasured in terms of accuracy,precision,recall,and F1-score.Results indicated the efficiency of the proposed technique,providing accuracies of 99.86%,99.98%,and 100%for RMFD,SMFD,and LFW,respectively.Moreover,the proposed method outperformed state-of-the-art deep learning methods in the recent bibliography for the same problem under study and on the same evaluation datasets. 展开更多
关键词 Convolutional neural networks face mask detection local binary patterns deep learning computer vision social protection Keras OPENCV TensorFlow Viola-Jones
下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部