期刊文献+
共找到8,945篇文章
< 1 2 250 >
每页显示 20 50 100
Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment
1
作者 Chengjun Wang Fan Ding +4 位作者 Yiwen Wang Renyuan Wu Xingyu Yao Chengjie Jiang Liuyi Ling 《Computers, Materials & Continua》 SCIE EI 2024年第1期1481-1501,共21页
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r... The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot. 展开更多
关键词 YOLACT real-time detection instance segmentation attention mechanism STRAWBERRY
下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
2
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 Artificial intelligence deep learning real-time object detection application
下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
3
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(SLAM)
下载PDF
A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
4
作者 Liang Liu Nan Yang +4 位作者 Saifei Liu Yuanyuan Cao Shuowen Tian Tiancheng Liu Xun Zhao 《Journal of Intelligent Learning Systems and Applications》 2024年第1期1-11,共11页
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m... Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection. 展开更多
关键词 real-time Mask Target CNN (Convolutional Neural Network) Single-Stage detection Multi-Scale Feature Perception
下载PDF
Real-time fault detection method based on belief rule base for aircraft navigation system 被引量:14
5
作者 Zhao Xin Wang Shicheng +2 位作者 Zhang Jinsheng Fan Zhiliang Min Haibo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期717-729,共13页
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting ... Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement. 展开更多
关键词 Belief rule base fault detection fault tolerant control Integrated navigation Parameter recursive estimation algorithm
原文传递
An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces
6
作者 Sheetal Sharma Kamali Gupta +2 位作者 DeepaliGupta Shalli Rani Gaurav Dhiman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2029-2059,共31页
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness... The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things. 展开更多
关键词 ERROR fault detection techniques sensor faults OUTLIERS Internet of Things
下载PDF
Infrared Fault Detection Method for Dense Electrolytic Bath Polar Plate Based on YOLOv5s
7
作者 Huiling Yu Yanqiu Hang +2 位作者 Shen Shi Kangning Wu Yizhuo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4859-4874,共16页
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal pr... Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste. 展开更多
关键词 Infrared polar plate fault detection YOLOv5 Real-ESRGAN Marr boundary detection operator Focal-EIoU loss
下载PDF
Optimizing Optical Fiber Faults Detection:A Comparative Analysis of Advanced Machine Learning Approaches
8
作者 Kamlesh Kumar Soothar Yuanxiang Chen +2 位作者 Arif Hussain Magsi Cong Hu Hussain Shah 《Computers, Materials & Continua》 SCIE EI 2024年第5期2697-2721,共25页
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o... Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics. 展开更多
关键词 Fiber optics fault detection multiclassification machine learning ensemble learning
下载PDF
Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines
9
作者 Hongjiang Wang Qingze Shen +3 位作者 Qin Dai Yingcai Gao Jing Gao Tian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期625-642,共18页
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ... Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1. 展开更多
关键词 Neural architecture search YOLOv8 evolutionary computation fault detection
下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples
10
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 fault detection vehicle battery system lithium batteries fault samples
下载PDF
Fault diagnosis method of link control system for gravitational wave detection
11
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
下载PDF
Real-time image processing and display in object size detection based on VC++ 被引量:2
12
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
下载PDF
Generalized autoencoder-based fault detection method for traction systems with performance degradation
13
作者 Chao Cheng Wenyu Liu +1 位作者 Lu Di Shenquan Wang 《High-Speed Railway》 2024年第3期180-186,共7页
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ... Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods. 展开更多
关键词 Performance degradation Generalized autoencoder fault detection Traction control systems High-speed trains
下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
14
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic Panels fault detection Deep Learning Image Processing
下载PDF
Online Fault Monitoring of On-Load Tap-Changer Based on Voiceprint Detection
15
作者 Kitwa Henock Bondo 《Journal of Power and Energy Engineering》 2024年第3期48-59,共12页
The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj... The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies. 展开更多
关键词 Online fault Monitoring OLTC On-Load Tap Change Voiceprint detection
下载PDF
Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain 被引量:10
16
作者 Qianyun Zhang Kaveh Barri +1 位作者 Saeed K.Babanajad Amir H.Alavi 《Engineering》 SCIE EI 2021年第12期1786-1796,共11页
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequen... This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection. 展开更多
关键词 Crack detection Concrete bridge deck Deep learning real-time
下载PDF
A fast and adaptive method for automatic weld defect detection in various real-time X-ray imaging systems 被引量:10
17
作者 邵家鑫 都东 +2 位作者 石涵 常保华 郭桂林 《China Welding》 EI CAS 2012年第1期8-12,共5页
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me... A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems. 展开更多
关键词 non-destructive testing real-time X-ray imaging weld defect automatie detection
下载PDF
Real-time Fluorescence PCR Method for Detection of Burkholderia glumae from Rice 被引量:5
18
作者 FANG Yuan XU Li-hui TIAN Wen-xiao HUAI Yan YU Shan-hong LOU Miao-miao XIE Guan-lin 《Rice science》 SCIE 2009年第2期157-160,共4页
Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further ... Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100. 展开更多
关键词 Burkholderia glumae bacterial grain rot detection real-time fluorescence polymerase chain reaction DCE
下载PDF
Comparison of ligase detection reaction and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B 被引量:3
19
作者 Xiao-Ling Wang Song-Gang Xie +3 位作者 Ling Zhang Wei-Xia Yang Xing Wang Hong-Zhi Jin 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第1期120-124,共5页
AIM: To compare the ligase detection reaction (LDR) and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B infection.METHODS: Mixtures of plasmids and serum samples from 52 c... AIM: To compare the ligase detection reaction (LDR) and real-time PCR for detection of low abundant YMDD mutants in patients with chronic hepatitis B infection.METHODS: Mixtures of plasmids and serum samples from 52 chronic hepatitis B patients with low abundant lamivudine-resistant mutations were tested with LDR and real-time PCR. Time required and reagent cost for both assays were evaluated.RESULTS: Real-time PCR detected 100, 50, 10, 1 and 0.1% of YIDD plasmid, whereas LDR detected 100, 50, 10, 1, 0.1, and 0.01% of YIDD plasmid, in mixtures with YMDD plasmid of 106 copies/mL. Among the 52 clinical serum samples, completely concordant results were obtained for all samples by both assays, and 39 YIDD, 9 YVDD, and 4 YIDD/YVDD were detected. Cost and time required for LDR and real-time PCR are 60/80 CNY (8/10.7 US dollars) and 4.5/2.5 h, respectively.CONCLUSION: LDR and real-time PCR are both sensitive and inexpensive methods for monitoring low abundant YMDD mutants during lamivudine therapy in patients with chronic hepatitis B. LDR is more sensitive and less expensive, while real-time PCR is more rapid. 展开更多
关键词 YMDD mutants Hepatitis B virus real-time PCR Ligase detection reaction
下载PDF
A real-time PCR targeted to the upstream regions of HlyB for specific detection of Edwardsiella tarda 被引量:2
20
作者 谢国驷 黄倢 +4 位作者 张庆利 韩娜娜 史成银 王秀华 刘庆慧 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期731-737,共7页
Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed ur... Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed urgently. To achieve this purpose, we developed a TaqMan-based real-time PCR assay for detection and quantification orE. tarda. The assay targets the hemolysin activator HlyB domain protein of E. tarda. Our optimized TaqMan assay is capable of detecting as little as 40 fg of genomic DNA per reaction. A standard curve was generated from the threshold cycle values (y) against log10 (E. tarda genomic DNA concentration) as x. The intra- and inter-assay coefficient of variation (CV) values were less than 2.06% and 1.05% respectively, indicating that the assay had good reproducibility. This method is highly specific to E. tarda strains, as it shows no cross-reactivity to Edwardsiella ictaluri, a member of the same genus, or to nine other fish-pathogenic bacteria species belonging to three other genera. This sensitive and specific real-time PCR assay provides a valuable tool for diagnostic quantitation of E. tarda in clinical samples. 展开更多
关键词 Edwardsiella tarda TAQMAN real-time PCR detection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部