In order to solve complex algorithm that is difficult to achieve real-time processing of Multiband image fusion within large amount of data, a real-time image fusion system based on FPGA and multi-DSP is designed. Fiv...In order to solve complex algorithm that is difficult to achieve real-time processing of Multiband image fusion within large amount of data, a real-time image fusion system based on FPGA and multi-DSP is designed. Five-band image acquisition, image registration, image fusion and display output can be done within the system which uses FPGA as the main processor and the other three DSP as an algorithm processor. Making full use of Flexible and high-speed characteristics of FPGA, while an image fusion algorithm based on multi-wavelet transform is optimized and applied to the system. The final experimental results show that the frame rate of 15 Hz, with a resolution of 1392 × 1040 of the five-band image can be used by the system to complete processing within 41ms.展开更多
This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolu...This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolution multi-spectral images for navigationinformation infrastructure. The mathematical model of image fusion is derived according to theprinciple of remote sensing image formation. It shows that the pixel values of a high-resolutionmulti-spectral images are determined by the pixel values of the approximation of a high-resolutionpanchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixelvalae computation the M-band wavelet theory and the a trous algorithm are then used. In order toevaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 mpanchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusionapproach gives promising fusion results and it can be used to produce the high-resolution remotesensing images required for navigation information infrastructures.展开更多
X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out wo...X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection.展开更多
The speed and quality of the image fusion always restrain each other.The real-time image fusion is one of the problems which needs to be studied and solved urgently.The windowing processing technology for the image fu...The speed and quality of the image fusion always restrain each other.The real-time image fusion is one of the problems which needs to be studied and solved urgently.The windowing processing technology for the image fusion proposed in this paper can solve this problem in a certain extent.The windowing rules were put forward and the applicable scope for the windowing fusion and the calculation method for the maximum windowing area were determined.And,the results of the windowing fusion were analyzed,verified and compared to confirm the feasibility of this technology.展开更多
AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasou...AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasound image in real time by merging the ultrasound image with a multiplanar reconstruction computed tomography(CT)image,using pre-scanned CT volume data.The ultrasound used was EUB-8500with a convex probe EUP-C514.The RVS images were evaluated based on 3 levels,namely,excellent,good and poor,by the displacement in position.RESULTS:By combining the objectivity of CT with free scanning using RVS,it was possible to easily interpret the relationship between lesions and the surrounding organs as well as the position of vascular structures.The resulting evaluation levels of the RVS images were12 excellent(pancreatic cancer,bile duct cancer,cholecystolithiasis and cholangiocellular carcinoma)and 3 good(pancreatic cancer and gallbladder cancer).Compared with conventional B-mode ultrasonography and CT,RVS images achieved a rate of 80%superior visualization and 20%better visualization.CONCLUSION:RVS has potential usefulness in objective visualization and diagnosis in the field of biliary and pancreatic diseases.展开更多
Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled po...Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled pose estimation(RRVPE)method for aerial robot navigation is presented.The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map.Ulteriorly,a GNSS receiver is used to continuously provide pseudorange,Doppler frequency shift and universal time coordinated(UTC)pulse signals to the pose estimator.The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame,and the local factor graph solution process is bounded in a circumscribed container,which can immensely abandon the computational complexity in nonlinear optimization procedure.The proposed robot pose estimator can achieve camera-rate(30 Hz)performance on the aerial robot companion computer.We thoroughly experimented the RRVPE system in both simulated and practical circumstances,and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators.展开更多
Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surger...Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surgery with virtual reality of simulation 3D computer models,3D printing models and more recently holograms and augmented reality(when virtual reality knowledge is superimposed onto reality).In addition,the utilization of real-time fluorescent imaging techniques based on indocyanine green(ICG)uptake allows clinicians to precisely delineate the liver anatomy and/or tumors within the parenchyma,applying the knowledge obtained preoperatively through digital imaging.The combination of both has transformed the abstract thinking until now based on 2D imaging into a 3D preoperative conception(virtual reality),enhanced with real-time visualization of the fluorescent liver structures,effectively facilitating intraoperative navigated liver surgery(augmented reality).Data sources:A literature search was performed from inception until January 2021 in MEDLINE(Pub Med),Embase,Cochrane library and database for systematic reviews(CDSR),Google Scholar,and National Institute for Health and Clinical Excellence(NICE)databases.Results:Fifty-one pertinent articles were retrieved and included.The different types of digital imaging technologies and the real-time navigated liver surgery were estimated and compared.Conclusions:ICG fluorescent imaging techniques can contribute essentially to the real-time definition of liver segments;as a result,precise hepatic resection can be guided by the presence of fluorescence.Furthermore,3D models can help essentially to further advancing of precision in hepatic surgery by permitting estimation of liver volume and functional liver remnant,delineation of resection lines along the liver segments and evaluation of tumor margins.In liver transplantation and especially in living donor liver transplantation(LDLT),3D printed models of the donor’s liver and models of the recipient’s hilar anatomy can contribute further to improving the results.In particular,pediatric LDLT abdominal cavity models can help to manage the largest challenge of this procedure,namely large-for-size syndrome.展开更多
In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared...In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared imagery into a single output to enhance visual perception. The proposed framework is computationally simple since it is only realized in the spatial domain. The core idea is to obtain an initial fused image by averaging all the source images. The initial fused image is then enhanced by selecting the most salient features guided from the root mean square error(RMSE) and fractal dimension of the visual and infrared images to obtain the final fused image.Extensive experiments on different scene imaginary demonstrate that it is consistently superior to the conventional image fusion methods in terms of visual and quantitative evaluations.展开更多
Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them...Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them contributes to the development and discovery of medicine. We introduce an equipment, performance of which is better than that of another molecular imaging system manufactured by Kodak Corp. It can take real-time small animal imaging in vivo, with lower cost and shorter development cycle on the LabVIEW platform. At last, a paradigm experiment on a nude mouse with green fluorescent protein (GFP) transgenic tumor is given to present a real-time DR-WFOI fusion simultaneous image.展开更多
文摘In order to solve complex algorithm that is difficult to achieve real-time processing of Multiband image fusion within large amount of data, a real-time image fusion system based on FPGA and multi-DSP is designed. Five-band image acquisition, image registration, image fusion and display output can be done within the system which uses FPGA as the main processor and the other three DSP as an algorithm processor. Making full use of Flexible and high-speed characteristics of FPGA, while an image fusion algorithm based on multi-wavelet transform is optimized and applied to the system. The final experimental results show that the frame rate of 15 Hz, with a resolution of 1392 × 1040 of the five-band image can be used by the system to complete processing within 41ms.
文摘This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolution multi-spectral images for navigationinformation infrastructure. The mathematical model of image fusion is derived according to theprinciple of remote sensing image formation. It shows that the pixel values of a high-resolutionmulti-spectral images are determined by the pixel values of the approximation of a high-resolutionpanchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixelvalae computation the M-band wavelet theory and the a trous algorithm are then used. In order toevaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 mpanchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusionapproach gives promising fusion results and it can be used to produce the high-resolution remotesensing images required for navigation information infrastructures.
文摘X-ray security equipment is currently a more commonly used dangerous goods detection tool, due to the increasing security work tasks, the use of target detection technology to assist security personnel to carry out work has become an inevitable trend. With the development of deep learning, object detection technology is becoming more and more mature, and object detection framework based on convolutional neural networks has been widely used in industrial, medical and military fields. In order to improve the efficiency of security staff, reduce the risk of dangerous goods missed detection. Based on the data collected in X-ray security equipment, this paper uses a method of inserting dangerous goods into an empty package to balance all kinds of dangerous goods data and expand the data set. The high-low energy images are combined using the high-low energy feature fusion method. Finally, the dangerous goods target detection technology based on the YOLOv7 model is used for model training. After the introduction of the above method, the detection accuracy is improved by 6% compared with the direct use of the original data set for detection, and the speed is 93FPS, which can meet the requirements of the online security system, greatly improve the work efficiency of security personnel, and eliminate the security risks caused by missed detection.
文摘The speed and quality of the image fusion always restrain each other.The real-time image fusion is one of the problems which needs to be studied and solved urgently.The windowing processing technology for the image fusion proposed in this paper can solve this problem in a certain extent.The windowing rules were put forward and the applicable scope for the windowing fusion and the calculation method for the maximum windowing area were determined.And,the results of the windowing fusion were analyzed,verified and compared to confirm the feasibility of this technology.
文摘AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasound image in real time by merging the ultrasound image with a multiplanar reconstruction computed tomography(CT)image,using pre-scanned CT volume data.The ultrasound used was EUB-8500with a convex probe EUP-C514.The RVS images were evaluated based on 3 levels,namely,excellent,good and poor,by the displacement in position.RESULTS:By combining the objectivity of CT with free scanning using RVS,it was possible to easily interpret the relationship between lesions and the surrounding organs as well as the position of vascular structures.The resulting evaluation levels of the RVS images were12 excellent(pancreatic cancer,bile duct cancer,cholecystolithiasis and cholangiocellular carcinoma)and 3 good(pancreatic cancer and gallbladder cancer).Compared with conventional B-mode ultrasonography and CT,RVS images achieved a rate of 80%superior visualization and 20%better visualization.CONCLUSION:RVS has potential usefulness in objective visualization and diagnosis in the field of biliary and pancreatic diseases.
基金Supported by the Guizhou Provincial Science and Technology Projects([2020]2Y044)the Science and Technology Projects of China Southern Power Grid Co.Ltd.(066600KK52170074)the National Natural Science Foundation of China(61473144)。
文摘Self-localization and orientation estimation are the essential capabilities for mobile robot navigation.In this article,a robust and real-time visual-inertial-GNSS(Global Navigation Satellite System)tightly coupled pose estimation(RRVPE)method for aerial robot navigation is presented.The aerial robot carries a front-facing stereo camera for self-localization and an RGB-D camera to generate 3D voxel map.Ulteriorly,a GNSS receiver is used to continuously provide pseudorange,Doppler frequency shift and universal time coordinated(UTC)pulse signals to the pose estimator.The proposed system leverages the Kanade Lucas algorithm to track Shi-Tomasi features in each video frame,and the local factor graph solution process is bounded in a circumscribed container,which can immensely abandon the computational complexity in nonlinear optimization procedure.The proposed robot pose estimator can achieve camera-rate(30 Hz)performance on the aerial robot companion computer.We thoroughly experimented the RRVPE system in both simulated and practical circumstances,and the results demonstrate dramatic advantages over the state-of-the-art robot pose estimators.
文摘Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surgery with virtual reality of simulation 3D computer models,3D printing models and more recently holograms and augmented reality(when virtual reality knowledge is superimposed onto reality).In addition,the utilization of real-time fluorescent imaging techniques based on indocyanine green(ICG)uptake allows clinicians to precisely delineate the liver anatomy and/or tumors within the parenchyma,applying the knowledge obtained preoperatively through digital imaging.The combination of both has transformed the abstract thinking until now based on 2D imaging into a 3D preoperative conception(virtual reality),enhanced with real-time visualization of the fluorescent liver structures,effectively facilitating intraoperative navigated liver surgery(augmented reality).Data sources:A literature search was performed from inception until January 2021 in MEDLINE(Pub Med),Embase,Cochrane library and database for systematic reviews(CDSR),Google Scholar,and National Institute for Health and Clinical Excellence(NICE)databases.Results:Fifty-one pertinent articles were retrieved and included.The different types of digital imaging technologies and the real-time navigated liver surgery were estimated and compared.Conclusions:ICG fluorescent imaging techniques can contribute essentially to the real-time definition of liver segments;as a result,precise hepatic resection can be guided by the presence of fluorescence.Furthermore,3D models can help essentially to further advancing of precision in hepatic surgery by permitting estimation of liver volume and functional liver remnant,delineation of resection lines along the liver segments and evaluation of tumor margins.In liver transplantation and especially in living donor liver transplantation(LDLT),3D printed models of the donor’s liver and models of the recipient’s hilar anatomy can contribute further to improving the results.In particular,pediatric LDLT abdominal cavity models can help to manage the largest challenge of this procedure,namely large-for-size syndrome.
基金supported in part by the National Natural Science Foundation of China (61533017,U1501251)
文摘In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared imagery into a single output to enhance visual perception. The proposed framework is computationally simple since it is only realized in the spatial domain. The core idea is to obtain an initial fused image by averaging all the source images. The initial fused image is then enhanced by selecting the most salient features guided from the root mean square error(RMSE) and fractal dimension of the visual and infrared images to obtain the final fused image.Extensive experiments on different scene imaginary demonstrate that it is consistently superior to the conventional image fusion methods in terms of visual and quantitative evaluations.
基金supported by the National HighTech Researchthe National"863"Project of China(No.2006AA020801)
文摘Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them contributes to the development and discovery of medicine. We introduce an equipment, performance of which is better than that of another molecular imaging system manufactured by Kodak Corp. It can take real-time small animal imaging in vivo, with lower cost and shorter development cycle on the LabVIEW platform. At last, a paradigm experiment on a nude mouse with green fluorescent protein (GFP) transgenic tumor is given to present a real-time DR-WFOI fusion simultaneous image.