期刊文献+
共找到339,615篇文章
< 1 2 250 >
每页显示 20 50 100
A deep reinforcement learning approach to gasoline blending real-time optimization under uncertainty
1
作者 Zhiwei Zhu Minglei Yang +3 位作者 Wangli He Renchu He Yunmeng Zhao Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期183-192,共10页
The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization i... The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization in gasoline blending relies on accurate blending models and is challenged by stochastic disturbances.Thus,we propose a real-time optimization algorithm based on the soft actor-critic(SAC)deep reinforcement learning strategy to optimize gasoline blending without relying on a single blending model and to be robust against disturbances.Our approach constructs the environment using nonlinear blending models and feedstocks with disturbances.The algorithm incorporates the Lagrange multiplier and path constraints in reward design to manage sparse product constraints.Carefully abstracted states facilitate algorithm convergence,and the normalized action vector in each optimization period allows the agent to generalize to some extent across different target production scenarios.Through these well-designed components,the algorithm based on the SAC outperforms real-time optimization methods based on either nonlinear or linear programming.It even demonstrates comparable performance with the time-horizon based real-time optimization method,which requires knowledge of uncertainty models,confirming its capability to handle uncertainty without accurate models.Our simulation illustrates a promising approach to free real-time optimization of the gasoline blending process from uncertainty models that are difficult to acquire in practice. 展开更多
关键词 Deep reinforcement learning Gasoline blending real-time optimization PETROLEUM Computer simulation Neural networks
下载PDF
A Novel Real-time Optimization Methodology for Chemical Plants 被引量:1
2
作者 黄静雯 李宏光 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1059-1066,共8页
In this paper, a novel approach termed process goose queue (PGQ) is suggested to deal with real-time optimization (RTO) of chemical plants. Taking advantage of the ad-hoc structure of PGQ which imitates biologic natur... In this paper, a novel approach termed process goose queue (PGQ) is suggested to deal with real-time optimization (RTO) of chemical plants. Taking advantage of the ad-hoc structure of PGQ which imitates biologic nature of flying wild geese, a chemical plant optimization problem can be re-formulated as a combination of a multi-layer PGQ and a PGQ-Objective according to the relationship among process variables involved in the objective and constraints. Subsequently, chemical plant RTO solutions are converted into coordination issues among PGQs which could be dealt with in a novel way. Accordingly, theoretical definitions, adjustment rule and implementing procedures associated with the approach are explicitly introduced together with corresponding enabling algorithms. Finally, an exemplary chemical plant is employed to demonstrate the feasibility and validity of the contribution. 展开更多
关键词 real-time optimization chemical plants process goose queue multi-layer process goose queue
下载PDF
Real-Time Optimization Model for Continuous Reforming Regenerator
3
作者 Jiang Shubao Jiang Hongbo +1 位作者 Li Zhenming Tian Jianhui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期90-103,共14页
An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal colloca... An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal collocation method is less time-consuming and more accurate,which can meet the requirement of real-time optimization(RTO).In this paper,the equation-oriented method combined with the orthogonal collocation method and the finite difference method is adopted to build the RTO model for catalytic reforming regenerator.The orthogonal collocation method was adopted to discretize the differential equations and sequential quadratic programming(SQP)algorithm was used to solve the algebraic equations.The rate constants,active energy and reaction order were estimated,with the sum of relative errors between actual value and simulated value serving as optimization objective function.The model can quickly predict the fields of component concentration,temperature and pressure inside the regenerator under different conditions,as well as the real-time optimized conditions for industrial reforming regenerator. 展开更多
关键词 catalytic reforming regenerator KINETICS model orthogonal collocation method real-time optimization
下载PDF
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization
4
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
下载PDF
Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty 被引量:1
5
作者 Zhong-Zheng Wang Kai Zhang +6 位作者 Guo-Dong Chen Jin-Ding Zhang Wen-Dong Wang Hao-Chen Wang Li-Ming Zhang Xia Yan Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期261-276,共16页
Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality r... Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality results,they cannot be applied to real-time optimization for large-scale reservoirs due to high computational demands.In addition,most methods generally assume that the reservoir model is deterministic and ignore the uncertainty of the subsurface environment,making the obtained scheme unreliable for practical deployment.In this work,an efficient and robust method,namely evolutionaryassisted reinforcement learning(EARL),is proposed to achieve real-time production optimization under uncertainty.Specifically,the production optimization problem is modeled as a Markov decision process in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy that maximizes the specified goals.To deal with the problems of brittle convergence properties and lack of efficient exploration strategies of reinforcement learning approaches,a population-based evolutionary algorithm is introduced to assist the training of agents,which provides diverse exploration experiences and promotes stability and robustness due to its inherent redundancy.Compared with prior methods that only optimize a solution for a particular scenario,the proposed approach trains a policy that can adapt to uncertain environments and make real-time decisions to cope with unknown changes.The trained policy,represented by a deep convolutional neural network,can adaptively adjust the well controls based on different reservoir states.Simulation results on two reservoir models show that the proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but also has strong robustness and real-time decision capacity. 展开更多
关键词 Production optimization Deep reinforcement learning Evolutionary algorithm real-time optimization optimization under uncertainty
下载PDF
ROS2 Real-time Performance Optimization and Evaluation
6
作者 Yanlei Ye Zhenguo Nie +3 位作者 Xinjun Liu Fugui Xie Zihao Li Peng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期36-50,共15页
Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception,force interaction,spatial obstacle avoidance,and motion planning.To ensure ... Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception,force interaction,spatial obstacle avoidance,and motion planning.To ensure the reliability and determinism of system execution,a flexible real-time control system architecture and interaction algorithm are required.The ROS framework was designed to improve the reusability of robotic software development by providing a distributed structure,hardware abstraction,message-passing mechanism,and application prototypes.Rich ecosystems for robotic development have been built around ROS1 and ROS2 architectures based on the Linux system.However,because of the fairness scheduling principle of the default Linux system design and the complexity of the kernel,the system does not have real-time computing.To achieve a balance between real-time and non-real-time computing,this paper uses the transmission mechanism of ROS2,combines it with the scheduling mechanism of the Linux operating system,and uses Preempt_RT to enhance the real-time computing of ROS1 and ROS2.The real-time performance evaluation of ROS1 and ROS2 is conducted from multiple perspectives,including throughput,transmission mode,QoS service quality,frequency,number of subscription nodes and EtherCAT master.This paper makes two significant contributions:firstly,it employs Preempt_RT to optimize the native ROS2 system,effectively enhancing the real-time performance of native ROS2 message transmission;secondly,it conducts a comprehensive evaluation of the real-time performance of both native and optimized ROS2 systems.This comparison elucidates the benefits of the optimized ROS2 architecture regarding real-time performance,with results vividly demonstrated through illustrative figures. 展开更多
关键词 ROS real-time system optimization Preempt_RT real-time performance evaluation of ROS2
下载PDF
Real-Time Memory Data Optimization Mechanism of Edge IoT Agent
7
作者 Shen Guo Wanxing Sheng +2 位作者 Shuaitao Bai Jichuan Zhang Peng Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期799-814,共16页
With the full development of disk-resident databases(DRDB)in recent years,it is widely used in business and transactional applications.In long-term use,some problems of disk databases are gradually exposed.For applica... With the full development of disk-resident databases(DRDB)in recent years,it is widely used in business and transactional applications.In long-term use,some problems of disk databases are gradually exposed.For applications with high real-time requirements,the performance of using disk database is not satisfactory.In the context of the booming development of the Internet of things,domestic real-time databases have also gradually developed.Still,most of them only support the storage,processing,and analysis of data values with fewer data types,which can not fully meet the current industrial process control system data types,complex sources,fast update speed,and other needs.Facing the business needs of efficient data collection and storage of the Internet of things,this paper optimizes the transaction processing efficiency and data storage performance of the memory database,constructs a lightweight real-time memory database transaction processing and data storage model,realizes a lightweight real-time memory database transaction processing and data storage model,and improves the reliability and efficiency of the database.Through simulation,we proved that the cache hit rate of the cache replacement algorithm proposed in this paper is higher than the traditional LRU(Least Recently Used)algorithm.Using the cache replacement algorithm proposed in this paper can improve the performance of the system cache. 展开更多
关键词 Disk resident database real-time database main memory database internet of things industrial process control
下载PDF
Real-time optimization of energy consumption under adaptive cruise control for connected HEVs 被引量:5
8
作者 Jiangyan ZHANG Fuguo XU 《Control Theory and Technology》 EI CSCD 2020年第2期182-192,共11页
This paper presents a real-time energy optimization algorithm for a hybrid electric vehicle(HEV)that operates with adaptive cruise control(ACC).Real-time energy optimization is an essential ssue such that the HEV powe... This paper presents a real-time energy optimization algorithm for a hybrid electric vehicle(HEV)that operates with adaptive cruise control(ACC).Real-time energy optimization is an essential ssue such that the HEV powertrain system is as efficient as possible.With connected vehice technique,ACC system shows considerable potential of high energy eficiency.Combining a classical ACC algorithm,a two-level cooperative control scheme is constructed to realize real-time power distribution for the host HEV that operates in a vehicle platoon.The proposed control strategy actually provides a solution for an optimal control problem with multi objectives in terms of string stable of vehicle platoon and energy consumption minimization of the individual following vehicle.The string stability and the real-time optimization performance of the cooperative control system are confirmed by simulations with respect to several operating scenarios. 展开更多
关键词 Connected vehicle hybrid electric vehicle adaptive cruise control real-time optimization
原文传递
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
9
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
10
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
基于Real-time PCR法检测乳粉中牛源性成分定量研究
11
作者 陈晨 史国华 +5 位作者 陈勃旭 张瑞 王玉欣 贾文珅 陈佳 周巍 《粮油食品科技》 CAS CSCD 北大核心 2024年第2期159-164,共6页
基于Real-timePCR建立了乳粉中牛源性成分相对定量检测方法,并对牛的特异性引物与探针进行了特异性、灵敏度和稳定性测试。通过模拟不同浓度牛乳粉与马乳粉混合样本,根据其△Ct值的函数关系进行线性拟合进而绘制标准曲线,建立乳粉中牛... 基于Real-timePCR建立了乳粉中牛源性成分相对定量检测方法,并对牛的特异性引物与探针进行了特异性、灵敏度和稳定性测试。通过模拟不同浓度牛乳粉与马乳粉混合样本,根据其△Ct值的函数关系进行线性拟合进而绘制标准曲线,建立乳粉中牛源性成分的相对定量检测。结果显示,该方法的最低检测限为0.00001 mg/mL,回收率为91.11%~119.2%,组间变异系数≤0.58%、组内变异系数≤1.44%。说明该方法在特异性与稳定性上适用于乳粉中牛源性成分及含量的掺假检测。 展开更多
关键词 牛乳粉 马乳粉 real-time PCR 掺假检测
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization 被引量:2
12
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE Alloy design Machine learning Bayesian optimization
下载PDF
A multifunctional shear apparatus for rocks subjected to true triaxial stress and high temperature in real-time 被引量:1
13
作者 Jun Zhao Xia-Ting Feng +2 位作者 Jia-Rong Wang Liang Hu Yue Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3524-3543,共20页
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic... Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress. 展开更多
关键词 True-triaxial shear apparatus ROCKS Complete shear stress-deformation process CREEP real-time high-temperature
下载PDF
Optimization Design of the Multi-Layer Cross-Sectional Layout of An Umbilical Based on the GA-GLM 被引量:1
14
作者 YANG Zhi-xun YIN Xu +5 位作者 FAN Zhi-rui YAN Jun LU Yu-cheng SU Qi MAO Yandong WANG Hua-lin 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期247-254,共8页
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct... Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry. 展开更多
关键词 UMBILICAL cross-sectional layout MULTI-LAYERS GA-GLM optimization
下载PDF
Frilled Lizard Optimization: A Novel Bio-Inspired Optimizer for Solving Engineering Applications 被引量:1
15
作者 Ibraheem Abu Falahah Osama Al-Baik +6 位作者 Saleh Alomari Gulnara Bektemyssova Saikat Gochhait Irina Leonova OmParkash Malik Frank Werner Mohammad Dehghani 《Computers, Materials & Continua》 SCIE EI 2024年第6期3631-3678,共48页
This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspi... This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspiration from the sit-and-wait hunting strategy of these lizards.The algorithm’s core principles are meticulously detailed and mathematically structured into two distinct phases:(i)an exploration phase,which mimics the lizard’s sudden attack on its prey,and(ii)an exploitation phase,which simulates the lizard’s retreat to the treetops after feeding.To assess FLO’s efficacy in addressing optimization problems,its performance is rigorously tested on fifty-two standard benchmark functions.These functions include unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions,as well as the challenging CEC 2017 test suite.FLO’s performance is benchmarked against twelve established metaheuristic algorithms,providing a comprehensive comparative analysis.The simulation results demonstrate that FLO excels in both exploration and exploitation,effectively balancing these two critical aspects throughout the search process.This balanced approach enables FLO to outperform several competing algorithms in numerous test cases.Additionally,FLO is applied to twenty-two constrained optimization problems from the CEC 2011 test suite and four complex engineering design problems,further validating its robustness and versatility in solving real-world optimization challenges.Overall,the study highlights FLO’s superior performance and its potential as a powerful tool for tackling a wide range of optimization problems. 展开更多
关键词 optimization engineering BIO-INSPIRED METAHEURISTIC frilled lizard exploration EXPLOITATION
下载PDF
Towards the performance limit of catenary meta-optics via field-driven optimization 被引量:1
16
作者 Siran Chen Yingli Ha +8 位作者 Fei Zhang Mingbo Pu Hanlin Bao Mingfeng Xu Yinghui Guo Yue Shen Xiaoliang Ma Xiong Li Xiangang Luo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期33-42,共10页
Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approx... Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices. 展开更多
关键词 catenary optics catenary structures field-driven optimization
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
17
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms optimization LEACH PEAGSIS
下载PDF
一种基于real-time PCR技术的TTV检测方法的建立及应用
18
作者 贾毅博 王高玉 +4 位作者 邓宛心 林彩云 杨华 陈运春 尹飞飞 《海南医学院学报》 CAS 北大核心 2024年第7期489-497,共9页
目的:本研究旨在开发一种具有更高灵敏度和特异性的TTV检测技术,为揭示TTV在多种疾病过程中的作用提供重要的技术支持。方法:为了更精确、灵敏的检测TTV,本研究分析了目前公布的所有亚型的TTV基因序列,在此基础上建立了一种基于UTR区域... 目的:本研究旨在开发一种具有更高灵敏度和特异性的TTV检测技术,为揭示TTV在多种疾病过程中的作用提供重要的技术支持。方法:为了更精确、灵敏的检测TTV,本研究分析了目前公布的所有亚型的TTV基因序列,在此基础上建立了一种基于UTR区域的real-time PCR检测方法,并与文献报道应用较为广泛的PCR检测方法进行了对比。结果:本研究建立的方法在1×10^(7)~1×10^(1) copies/μL标准品浓度范围内具有良好的线性关系,相关系数为1.000,斜率为-3.446,检测下限为1×10^(1) copies/μL。重复性试验结果显示,组内变异系数为7.22%,表明本方法重复性、稳定性较强。针对30份临床样本,使用本研究建立的real-time PCR检测方法及目前被多个研究所使用的4套引物进行对比。结果表明,本研究所建立的方法灵敏度显著高于文献中报道的4种方法(P<0.01);Sanger测序结果表明,本方法检测出的30份阳性样本均为TTV,检测特异性为100%。结论:本研究采用基于TaqMan探针的real-time PCR检测方法,检测灵敏性高、覆盖基因型范围广,尤其对于TTV病毒载量较低的情况下能够进行定量检测,对于TTV病毒的致病性及作为免疫标志物的应用提供重要的技术支持。 展开更多
关键词 Torque teno virus 基因组扩增测序 real-time PCR检测
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
19
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Cooperative User-Scheduling and Resource Allocation Optimization for Intelligent Reflecting Surface Enhanced LEO Satellite Communication 被引量:1
20
作者 Meng Meng Bo Hu +1 位作者 Shanzhi Chen Jianyin Zhang 《China Communications》 SCIE CSCD 2024年第2期227-244,共18页
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate... Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput. 展开更多
关键词 convex optimization intelligent reflecting surface LEO satellite communication OFDM
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部