Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic E...Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan展开更多
Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response ...Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.展开更多
The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In ...The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In recent years,with the continuous improvement of monitoring technology and increase of public demands,the original real-time monitoring system needs to be upgraded and improved in terms of timeliness,stability,accuracy and ease of operation.Therefore,by accessing a total of more than 1,000 seismic stations,reducing the seismic trigger threshold of the monitoring system,eliminating the false trigger stations and optimizing the seismic waveform display interface,the current earthquake monitoring demands can be satisfied on the basis of ensuring the stable operation of the system.展开更多
A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.Howeve...A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.展开更多
An earthquake is usually followed by a considerable number of aftershocks that play a significant role in earthquake-induced landslides,During the aftershock,the cracking process in rocks becomes more complex because ...An earthquake is usually followed by a considerable number of aftershocks that play a significant role in earthquake-induced landslides,During the aftershock,the cracking process in rocks becomes more complex because of the formation of faults.In order to investigate the effects of seismic loading on the cracking processes in a specimen containing a single flaw,a numerical approach based on the bonded-particle model(BPM)was adopted to study the seismic loading applied in two orthogonal directions.The results reveal that no transmission and reflection phenomena were observable in the small specimens(76 mm×152 mm)because they were considerably smaller than the wavelength of the P-wave.Furthermore,under seismic loading,the induced crack was solely tensile in nature.Repeated axial seismic loading did not induce crack propagation after the first axial seismic loading.Cracks began to propagate only when the seismic loading direction was changed from axial to lateral,and then back to axial,ultimately resulting in the failure of the specimen.展开更多
Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black ...Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black box’nature of learning have limited them in practice and difficult to interpret.Furthermore,including the governing equations and physical facts in such methods is also another challenge,which entails either ignoring the physics or simplifying them using unrealistic data.To address such issues,physics informed machine learning methods have been developed which can integrate the governing physics law into the learning process.In this work,a 1-dimensional(1 D)time-dependent seismic wave equation is considered and solved using two methods,namely Gaussian process(GP)and physics informed neural networks.We show that these meshless methods are trained by smaller amount of data and can predict the solution of the equation with even high accuracy.They are also capable of inverting any parameter involved in the governing equation such as wave velocity in our case.Results show that the GP can predict the solution of the seismic wave equation with a lower level of error,while our developed neural network is more accurate for velocity(P-and S-wave)and density inversion.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the s...Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the seismic wave band after the image processing is narrow.They limit the full utilization of broadband raw data.The concept of full wave seismic exploration is redefined based on the idea of balanced utilization of reflected wave,diffracted wave and scattered wave information,its characteristics and adaptive conditions are clarified.A set of key technologies suitable for full wave seismic exploration are put forward.During seismic acquisition period,it is necessary to adopt multi geometry,i.e.embed small bin,small offset and small channel interval data in conventional geometry.By discretizing of common midpoint(CMP)gathers,small offset with high coverage,the weak signals such as diffracted wave and scattered wave in the raw seismic data can be enhanced.During seismic processing,the signal and noise in the original seismic data need to be redefined at first.The effective signals of seismic data are enhanced through merging of multi-geometry data.By means of differential application of data with different bin sizes and different arrangement modes,different regimes of seismic waves can be effectively decomposed and imaged separately.During seismic interpretation stage,making the most of the full wave seismic data,and adopting well-seismic calibration on multi-scale and multi-dimension,the seismic attributes in multi-regimes and multi-domains are interpreted to reveal interior information of complex lithology bodies and improve the lateral resolution of non-layered reservoirs.展开更多
On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study t...On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.展开更多
文摘Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan
文摘Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.
基金the China Earthquake Network Center Seismic Network Department Daily Operation and Maintenance Funding Support(1950411001)
文摘The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In recent years,with the continuous improvement of monitoring technology and increase of public demands,the original real-time monitoring system needs to be upgraded and improved in terms of timeliness,stability,accuracy and ease of operation.Therefore,by accessing a total of more than 1,000 seismic stations,reducing the seismic trigger threshold of the monitoring system,eliminating the false trigger stations and optimizing the seismic waveform display interface,the current earthquake monitoring demands can be satisfied on the basis of ensuring the stable operation of the system.
基金supported by the National Natural Science Foundation of China (under grants 41874048,41790464,41790462).
文摘A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.
基金the National Natural Science Foundation of China(52108382,51978541,41941018,and 51839009)China Postdoctoral Science Foundation(2019M662711)for funding provided to this work。
文摘An earthquake is usually followed by a considerable number of aftershocks that play a significant role in earthquake-induced landslides,During the aftershock,the cracking process in rocks becomes more complex because of the formation of faults.In order to investigate the effects of seismic loading on the cracking processes in a specimen containing a single flaw,a numerical approach based on the bonded-particle model(BPM)was adopted to study the seismic loading applied in two orthogonal directions.The results reveal that no transmission and reflection phenomena were observable in the small specimens(76 mm×152 mm)because they were considerably smaller than the wavelength of the P-wave.Furthermore,under seismic loading,the induced crack was solely tensile in nature.Repeated axial seismic loading did not induce crack propagation after the first axial seismic loading.Cracks began to propagate only when the seismic loading direction was changed from axial to lateral,and then back to axial,ultimately resulting in the failure of the specimen.
文摘Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black box’nature of learning have limited them in practice and difficult to interpret.Furthermore,including the governing equations and physical facts in such methods is also another challenge,which entails either ignoring the physics or simplifying them using unrealistic data.To address such issues,physics informed machine learning methods have been developed which can integrate the governing physics law into the learning process.In this work,a 1-dimensional(1 D)time-dependent seismic wave equation is considered and solved using two methods,namely Gaussian process(GP)and physics informed neural networks.We show that these meshless methods are trained by smaller amount of data and can predict the solution of the equation with even high accuracy.They are also capable of inverting any parameter involved in the governing equation such as wave velocity in our case.Results show that the GP can predict the solution of the seismic wave equation with a lower level of error,while our developed neural network is more accurate for velocity(P-and S-wave)and density inversion.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.
基金Supported by the Sinopec Ministry of Science and Technology Project(P21038-3)。
文摘Reflected wave seismology has the following defects:the acquisition design is based on the assumption of layered media,the signal processing suppresses weak signals such as diffracted wave and scattered wave,and the seismic wave band after the image processing is narrow.They limit the full utilization of broadband raw data.The concept of full wave seismic exploration is redefined based on the idea of balanced utilization of reflected wave,diffracted wave and scattered wave information,its characteristics and adaptive conditions are clarified.A set of key technologies suitable for full wave seismic exploration are put forward.During seismic acquisition period,it is necessary to adopt multi geometry,i.e.embed small bin,small offset and small channel interval data in conventional geometry.By discretizing of common midpoint(CMP)gathers,small offset with high coverage,the weak signals such as diffracted wave and scattered wave in the raw seismic data can be enhanced.During seismic processing,the signal and noise in the original seismic data need to be redefined at first.The effective signals of seismic data are enhanced through merging of multi-geometry data.By means of differential application of data with different bin sizes and different arrangement modes,different regimes of seismic waves can be effectively decomposed and imaged separately.During seismic interpretation stage,making the most of the full wave seismic data,and adopting well-seismic calibration on multi-scale and multi-dimension,the seismic attributes in multi-regimes and multi-domains are interpreted to reveal interior information of complex lithology bodies and improve the lateral resolution of non-layered reservoirs.
基金supported by National Natural Science Foundation of China (41304046)
文摘On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.