Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOL...Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.展开更多
The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage de...The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.展开更多
This paper proposes innovations to address challenges emanating from road traffic congestion. Improving economies create more car owners resulting in increased automobile manufacturing, increased vehicle population gi...This paper proposes innovations to address challenges emanating from road traffic congestion. Improving economies create more car owners resulting in increased automobile manufacturing, increased vehicle population giving rise to higher emission of CO2 resulting in traffic congestion. Congested traffic has idling vehicles which emit higher CO2 and pollution. Besides, traffic congestion increases turnaround time, delivery time, commuting time and related logistical aspects. Commuting time negatively impacts working hours. Unless the traffic congestion is mitigated, the economy will take a beating creating a vicious ecology cycle. Building new roads, bridges or reconditioning of infrastructure is not always the best possible solutions. Efficient traffic management is a key to country’s economic growth. Various analytical models are employed to study, appreciate traffic congestion. The paper studies these models to infer that real time approach is the only solution. Several approaches are being worked on and few commercial systems too are available. These systems provide traffic information for course correction. However, it has latency and hence deviates from real time environment. Traffic congestion being highly dynamic in nature, it necessitates real time solution with real time inputs. It is proposed to integrate Real time traffic data with the traffic signal thus modulating the cycle timings at every junction. Deviation from static asymmetric cycle timing is implemented by assigning green phases based on density of vehicles. With minimalistic infrastructure and negligible incremental cost, the paper not only proposes to address traffic congestion but also paves the way for capturing traffic offenses, vehicle tracking and toll collection. The research is imminently realizable and makes a strong case for a PPP (Public Private Partnership) project.展开更多
The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are sum...The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are summarized. The identification and reconstruction of real time traffic data are analyzed using Kalman filter equation and statistical approach. Four methods for ITS (Intelligent transportation system) detector data screening in traffic management systems are discussed in detail. Meanwhile traffic data examinations are discussed with solutions formulated through analysis, and recommendations are made for information collection and data management in future.展开更多
Over the past decade, automatic traffic accident recognition has become a prominent objective in the area of machine vision and pattern recognition because of its immense application potential in developing autonomous...Over the past decade, automatic traffic accident recognition has become a prominent objective in the area of machine vision and pattern recognition because of its immense application potential in developing autonomous Intelligent Transportation Systems (ITS). In this paper, we present a new framework toward a real-time automated recognition of traffic accident based on the Histogram of Flow Gradient (HFG) and statistical logistic regression analysis. First, optical flow is estimated and the HFG is constructed from video shots. Then vehicle patterns are clustered based on the HFG-features. By using logistic regression analysis to fit data to logistic curves, the classifier model is generated. Finally, the trajectory of the vehicle by which the accident was occasioned, is determined and recorded. The experimental results on real video sequences demonstrate the efficiency and the applicability of the framework and show it is of higher robustness and can comfortably provide latency guarantees to real-time surveillance and traffic monitoring applications.展开更多
Vehicle emissions calculation methods mostly use ownership information or annual road monitoring data as the activity level to calculate air pollutant emissions,but it is hard to reflect either the emissions intensity...Vehicle emissions calculation methods mostly use ownership information or annual road monitoring data as the activity level to calculate air pollutant emissions,but it is hard to reflect either the emissions intensity under different conditions or the spatiotemporal characteristics in various sections based on such approaches.This paper presents a method based on the Macroscopic Fundamental Diagram and real-time traffic data to calculate vehicle emissions,which could reflect the operation conditions and emission characteristics of vehicles.Following the‘Technical Guide for the Compiling of Road Vehicle Air Pollutant Emissions Inventories’,the emissions of three roads with different lane numbers and road grades in Beijing were estimated and verified using this method.Compared with monitoring data,the average deviations of the traffic flow on the Fifth Expressway,Jingfu National Highway,and Jingzhou Provincial Highway were?25.5%,?26.5%,and?13.4%,respectively,and the average deviations of nitrogen oxides emissions were?27.7%,?12.9%,and?12%,respectively.This method showed good application potentials to construct the emissions inventory applied to the block-scale model and analyze the spatiotemporal distribution characteristics of motor vehicle emissions in urban areas.展开更多
this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of t...this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.展开更多
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource effic...Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.展开更多
Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed vi...Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed video with interframe motion vectors for speed, density and flow detection, has been proposed for ex-traction of traffic information under fixed camera setting and well-defined environment. The motion vectors arefirst separated from the compressed video streams, and then filtered to eliminate incorrect and noisy vectors u-sing the well-defined environmental knowledge. By applying the projective transform and using the filtered mo-tion vectors, speed can be calculated from motion vector statistics, density can be estimated using the motionvector occupancy, and flow can be detected using the combination of speed and density. The embodiment of aprototype system for sky camera traffic monitoring using the MPEG video has been implemented, and experi-mental results proved the effectiveness of the method proposed.展开更多
The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the reg...The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.展开更多
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,re...Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,resulting in long waiting times,high carbon emissions,and other undesirable situations.It is vital to estimate incident response times quickly and accurately after traffic incidents occur for the success of incident-related planning and response activities.This study presents a model for forecasting the traffic incident duration of traffic events with high precision.The proposed model goes through a 4-stage process using various features to predict the duration of four different traffic events and presents a feature reduction approach to enable real-time data collection and prediction.In the first stage,the dataset consisting of 24,431 data points and 75 variables is prepared by data collection,merging,missing data processing and data cleaning.In the second stage,models such as Decision Trees(DT),K-Nearest Neighbour(KNN),Random Forest(RF)and Support Vector Machines(SVM)are used and hyperparameter optimisation is performed with GridSearchCV.In the third stage,feature selection and reduction are performed and real-time data are used.In the last stage,model performance with 14 variables is evaluated with metrics such as accuracy,precision,recall,F1-score,MCC,confusion matrix and SHAP.The RF model outperforms other models with an accuracy of 98.5%.The study’s prediction results demonstrate that the proposed dynamic prediction model can achieve a high level of success.展开更多
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ...Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collec...This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collected by A-GPS mobile phones to track vehicles traveling on urban roads. In addition, tracking data obtained from individual mobile probes are aggregated to provide estimations of average road link speeds along rolling time periods. Moreover, the estimated average speeds are classified to different traffic condition levels, which are prepared for displaying a real-time traffic map on mobile phones. Simulation results demonstrate the effectiveness of the proposed method, which are fundamental for the subsequent development of a system demonstrator.展开更多
基金supported by Heilongjiang Provincial Natural Science Foundation of China(LH2023E055)the National Key R&D Program of China(2021YFB2600502).
文摘Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.
文摘The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.
文摘This paper proposes innovations to address challenges emanating from road traffic congestion. Improving economies create more car owners resulting in increased automobile manufacturing, increased vehicle population giving rise to higher emission of CO2 resulting in traffic congestion. Congested traffic has idling vehicles which emit higher CO2 and pollution. Besides, traffic congestion increases turnaround time, delivery time, commuting time and related logistical aspects. Commuting time negatively impacts working hours. Unless the traffic congestion is mitigated, the economy will take a beating creating a vicious ecology cycle. Building new roads, bridges or reconditioning of infrastructure is not always the best possible solutions. Efficient traffic management is a key to country’s economic growth. Various analytical models are employed to study, appreciate traffic congestion. The paper studies these models to infer that real time approach is the only solution. Several approaches are being worked on and few commercial systems too are available. These systems provide traffic information for course correction. However, it has latency and hence deviates from real time environment. Traffic congestion being highly dynamic in nature, it necessitates real time solution with real time inputs. It is proposed to integrate Real time traffic data with the traffic signal thus modulating the cycle timings at every junction. Deviation from static asymmetric cycle timing is implemented by assigning green phases based on density of vehicles. With minimalistic infrastructure and negligible incremental cost, the paper not only proposes to address traffic congestion but also paves the way for capturing traffic offenses, vehicle tracking and toll collection. The research is imminently realizable and makes a strong case for a PPP (Public Private Partnership) project.
文摘The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are summarized. The identification and reconstruction of real time traffic data are analyzed using Kalman filter equation and statistical approach. Four methods for ITS (Intelligent transportation system) detector data screening in traffic management systems are discussed in detail. Meanwhile traffic data examinations are discussed with solutions formulated through analysis, and recommendations are made for information collection and data management in future.
文摘Over the past decade, automatic traffic accident recognition has become a prominent objective in the area of machine vision and pattern recognition because of its immense application potential in developing autonomous Intelligent Transportation Systems (ITS). In this paper, we present a new framework toward a real-time automated recognition of traffic accident based on the Histogram of Flow Gradient (HFG) and statistical logistic regression analysis. First, optical flow is estimated and the HFG is constructed from video shots. Then vehicle patterns are clustered based on the HFG-features. By using logistic regression analysis to fit data to logistic curves, the classifier model is generated. Finally, the trajectory of the vehicle by which the accident was occasioned, is determined and recorded. The experimental results on real video sequences demonstrate the efficiency and the applicability of the framework and show it is of higher robustness and can comfortably provide latency guarantees to real-time surveillance and traffic monitoring applications.
基金This work was supported by the Green Shoots Plan,China[No.GS201826]the National Key Research and Development Program of China[2016YFC0208103]+1 种基金the National Natural Science Foundation of China[No.21607008]Special Project of Application basic Preface of Wuhan Science and Technology Bureau[No.2018060401011310].
文摘Vehicle emissions calculation methods mostly use ownership information or annual road monitoring data as the activity level to calculate air pollutant emissions,but it is hard to reflect either the emissions intensity under different conditions or the spatiotemporal characteristics in various sections based on such approaches.This paper presents a method based on the Macroscopic Fundamental Diagram and real-time traffic data to calculate vehicle emissions,which could reflect the operation conditions and emission characteristics of vehicles.Following the‘Technical Guide for the Compiling of Road Vehicle Air Pollutant Emissions Inventories’,the emissions of three roads with different lane numbers and road grades in Beijing were estimated and verified using this method.Compared with monitoring data,the average deviations of the traffic flow on the Fifth Expressway,Jingfu National Highway,and Jingzhou Provincial Highway were?25.5%,?26.5%,and?13.4%,respectively,and the average deviations of nitrogen oxides emissions were?27.7%,?12.9%,and?12%,respectively.This method showed good application potentials to construct the emissions inventory applied to the block-scale model and analyze the spatiotemporal distribution characteristics of motor vehicle emissions in urban areas.
文摘this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.
文摘Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
文摘Extraction of traffic information from image or video sequence is a hot research topic in intelligenttransportation system and computer vision. A real-time traffic information extraction method based on com-pressed video with interframe motion vectors for speed, density and flow detection, has been proposed for ex-traction of traffic information under fixed camera setting and well-defined environment. The motion vectors arefirst separated from the compressed video streams, and then filtered to eliminate incorrect and noisy vectors u-sing the well-defined environmental knowledge. By applying the projective transform and using the filtered mo-tion vectors, speed can be calculated from motion vector statistics, density can be estimated using the motionvector occupancy, and flow can be detected using the combination of speed and density. The embodiment of aprototype system for sky camera traffic monitoring using the MPEG video has been implemented, and experi-mental results proved the effectiveness of the method proposed.
文摘The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
文摘Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,resulting in long waiting times,high carbon emissions,and other undesirable situations.It is vital to estimate incident response times quickly and accurately after traffic incidents occur for the success of incident-related planning and response activities.This study presents a model for forecasting the traffic incident duration of traffic events with high precision.The proposed model goes through a 4-stage process using various features to predict the duration of four different traffic events and presents a feature reduction approach to enable real-time data collection and prediction.In the first stage,the dataset consisting of 24,431 data points and 75 variables is prepared by data collection,merging,missing data processing and data cleaning.In the second stage,models such as Decision Trees(DT),K-Nearest Neighbour(KNN),Random Forest(RF)and Support Vector Machines(SVM)are used and hyperparameter optimisation is performed with GridSearchCV.In the third stage,feature selection and reduction are performed and real-time data are used.In the last stage,model performance with 14 variables is evaluated with metrics such as accuracy,precision,recall,F1-score,MCC,confusion matrix and SHAP.The RF model outperforms other models with an accuracy of 98.5%.The study’s prediction results demonstrate that the proposed dynamic prediction model can achieve a high level of success.
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation (No.PRF-44468-G9)+3 种基金the Research Fellowship for International Young Scientists (No.51050110143)the Fok Ying-Tong Education Foundation (No.114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
文摘This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collected by A-GPS mobile phones to track vehicles traveling on urban roads. In addition, tracking data obtained from individual mobile probes are aggregated to provide estimations of average road link speeds along rolling time periods. Moreover, the estimated average speeds are classified to different traffic condition levels, which are prepared for displaying a real-time traffic map on mobile phones. Simulation results demonstrate the effectiveness of the proposed method, which are fundamental for the subsequent development of a system demonstrator.