期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Real-time Monitoring of Subsea Gas Pipelines,Offshore Platforms,and Ship Inspection Scores Using an Automatic Identification System 被引量:1
1
作者 K.B.Artana T.Pitana +3 位作者 D.P.Dinariyana M.Ariana D.Kristianto E.Pratiwi 《Journal of Marine Science and Application》 CSCD 2018年第1期101-111,共11页
The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship i... The aim of this research is to develop an algorithm and application that can perform real-time monitoring of the safety operation of offshore platforms and subsea gas pipelines as well as determine the need for ship inspection using data obtained from automatic identification system(AIS).The research also focuses on the integration of shipping database,AIS data,and others to develop a prototype for designing a real-time monitoring system of offshore platforms and pipelines.A simple concept is used in the development of this prototype,which is achieved by using an overlaying map that outlines the coordinates of the offshore platform and subsea gas pipeline with the ship’s coordinates(longitude/latitude)as detected by AIS.Using such information,we can then build an early warning system(EWS)relayed through short message service(SMS),email,or other means when the ship enters the restricted and exclusion zone of platforms and pipelines.The ship inspection system is developed by combining several attributes.Then,decision analysis software is employed to prioritize the vessel’s four attributes,including ship age,ship type,classification,and flag state.Results show that the EWS can increase the safety level of offshore platforms and pipelines,as well as the efficient use of patrol boats in monitoring the safety of the facilities.Meanwhile,ship inspection enables the port to prioritize the ship to be inspected in accordance with the priority ranking inspection score. 展开更多
关键词 Automatic identification system AIS real-timemonitoring Subsea gas pipeline OFFSHORE platform SHIP inspection SCORE
下载PDF
AI for science: Predicting infectious diseases
2
作者 Alexis Pengfei Zhao Shuangqi Li +5 位作者 Zhidong Cao Paul Jen-Hwa Hu Jiaojiao Wang Yue Xiang Da Xie Xi Lu 《Journal of Safety Science and Resilience》 EI CSCD 2024年第2期130-146,共17页
The global health landscape has been persistently challenged by the emergence and re-emergence of infectious diseases.Traditional epidemiological models,rooted in the early 2oth century,have provided foundational in-s... The global health landscape has been persistently challenged by the emergence and re-emergence of infectious diseases.Traditional epidemiological models,rooted in the early 2oth century,have provided foundational in-sights into disease dynamics.However,the intricate web of modern global interactions and the exponential growth of available data demand more advanced predictive tools.This is where AI for Science(AI4S)comes into play,offering a transformative approach by integrating artificial intelligence(Al)into infectious disease pre-diction.This paper elucidates the pivotal role of AI4s in enhancing and,in some instances,superseding tradi-tional epidemiological methodologies.By harnessing AI's capabilities,AI4S facilitates real-time monitoring,sophisticated data integration,and predictive modeling with enhanced precision.The comparative analysis highlights the stark contrast between conventional models and the innovative strategies enabled by AI4S.In essence,Al4S represents a paradigm shift in infectious disease research.It addresses the limitations of traditional models and paves the way for a more proactive and informed response to future outbreaks.As we navigate the complexities of global health challenges,Al4S stands as a beacon,signifying the next phase of evolution in disease prediction,characterized by increased accuracy,adaptability,and efficiency. 展开更多
关键词 AI for science(AI4S) Data integration Global healthchallenges Infectious disease prediction Predictive modeling real-timemonitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部