This study assessed the contribution of climate projections to improving rainfall information for cocoa crops in the central and southern regions of Côte d’Ivoire. Particular attention was paid to fourteen local...This study assessed the contribution of climate projections to improving rainfall information for cocoa crops in the central and southern regions of Côte d’Ivoire. Particular attention was paid to fourteen localities in these two climatic zones. Simulation data were obtained from the CORDEX ensemble and observation data from CHIRPS. They cover the period 1991-2005 for the reference period and the future period from 2021 to 2050 for the RCP4.5 and RCP8.5 scenarios. In addition, the study was based on the water requirements necessary during the critical phase of the cocoa tree (the flowering phase) for a good yield from the cocoa production chain on the one hand, and on a selection of three climate indices CDD, CWD and r95PTOT to study their spatio-temporal changes over two future periods 2021-2035 (near future) and 2036-2050 (medium-term) on the other. These climatic indices influence cocoa cultivation and their use in studies of climatic impacts on agriculture is of prime importance. The analysis of their spatio-temporal changes in this work also contributes to providing climate services based on rainfall, to which cocoa crops are highly sensitive. Our results show that the CDD and CWD indices vary from one region to another depending on latitude. For the fourteen localities studied, the number of consecutive dry days (CDD) could increase between now and 2050, while the number of consecutive wet days (CWD) could decrease over the period 2021-2035 and then increase over the period 2036-2050. The localities of Tabou, Aboisso and San-Pedro record high numbers of CDD index and CWD index for both projection scenarios. In comparison with the RCP4.5 and RCP8.5 scenarios, these results show that the RCP8.5 scenarios are having an impact on cocoa growing in Côte d’Ivoire.展开更多
文摘This study assessed the contribution of climate projections to improving rainfall information for cocoa crops in the central and southern regions of Côte d’Ivoire. Particular attention was paid to fourteen localities in these two climatic zones. Simulation data were obtained from the CORDEX ensemble and observation data from CHIRPS. They cover the period 1991-2005 for the reference period and the future period from 2021 to 2050 for the RCP4.5 and RCP8.5 scenarios. In addition, the study was based on the water requirements necessary during the critical phase of the cocoa tree (the flowering phase) for a good yield from the cocoa production chain on the one hand, and on a selection of three climate indices CDD, CWD and r95PTOT to study their spatio-temporal changes over two future periods 2021-2035 (near future) and 2036-2050 (medium-term) on the other. These climatic indices influence cocoa cultivation and their use in studies of climatic impacts on agriculture is of prime importance. The analysis of their spatio-temporal changes in this work also contributes to providing climate services based on rainfall, to which cocoa crops are highly sensitive. Our results show that the CDD and CWD indices vary from one region to another depending on latitude. For the fourteen localities studied, the number of consecutive dry days (CDD) could increase between now and 2050, while the number of consecutive wet days (CWD) could decrease over the period 2021-2035 and then increase over the period 2036-2050. The localities of Tabou, Aboisso and San-Pedro record high numbers of CDD index and CWD index for both projection scenarios. In comparison with the RCP4.5 and RCP8.5 scenarios, these results show that the RCP8.5 scenarios are having an impact on cocoa growing in Côte d’Ivoire.