A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutua...A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.展开更多
Mass selection for fast growth was conducted in three Pacific oyster (Crassostrea gigas) stocks from China, Japan and Korea using previously established lines (CS1, JS1, and KS1). To determine whether continuous progr...Mass selection for fast growth was conducted in three Pacific oyster (Crassostrea gigas) stocks from China, Japan and Korea using previously established lines (CS1, JS1, and KS1). To determine whether continuous progress can be achieved by selection for growth, the progeny of three second-generation Pacific oyster lines was selected for shell height and evaluated via a 400-day farming experiment. When harvested at the end of the experiment, the selected crosses of CS2, JS2, and KS2 lines grew by 9.2%, 10.2% and 9.6% larger than the control crosses, respectively. During grow-out stage, the genetic gain of three selected lines was (10.2 ± 1.4)%, (10.4 ± 0.3)%, and (8.4 ± 1.6)%, respectively; and the corresponding realized heritability was 0.457 ± 0.143, 0.312 ± 0.071 and 0.332 ± 0.009, respectively. These results indicated that the selection for fast growth achieved steady progress in the second generation of oyster. Our work provides supportive evidence for the continuity of the Pacific oyster selective breeding program.展开更多
文摘A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.
基金supported by the National High Technology Research and Development Program (2006AA10A409)the National Basic Research Program of China (2010CB126406)
文摘Mass selection for fast growth was conducted in three Pacific oyster (Crassostrea gigas) stocks from China, Japan and Korea using previously established lines (CS1, JS1, and KS1). To determine whether continuous progress can be achieved by selection for growth, the progeny of three second-generation Pacific oyster lines was selected for shell height and evaluated via a 400-day farming experiment. When harvested at the end of the experiment, the selected crosses of CS2, JS2, and KS2 lines grew by 9.2%, 10.2% and 9.6% larger than the control crosses, respectively. During grow-out stage, the genetic gain of three selected lines was (10.2 ± 1.4)%, (10.4 ± 0.3)%, and (8.4 ± 1.6)%, respectively; and the corresponding realized heritability was 0.457 ± 0.143, 0.312 ± 0.071 and 0.332 ± 0.009, respectively. These results indicated that the selection for fast growth achieved steady progress in the second generation of oyster. Our work provides supportive evidence for the continuity of the Pacific oyster selective breeding program.